

Computer Vision in the Wild: Benchmark & Challenge Summary

October 2022

Chunyuan Li
Deep Learning Team
Microsoft Research, Redmond

Why CVinW? Evaluation of Language-augmented Visual Task-level Transfer

Current Research (in the lab)

Computer Vision in the Wild

Image Classification

Object Detection

Trend

- Building transferable systems (eg, foundation models) that can adapt to a wide range of CV tasks
- Inspired by the success of CLIP, many language-augmented visual models appear

Challenges

- Fairness: Customized task sets may favor individual pre-trained model
- Transparency: Detailed model adaptation process is inaccessible

What is Computer Vision in the Wild (CVinW)?

Developing a transferable foundation model/system that can *effortlessly* adapt to *a large range of visual tasks* in the wild.

It comes with two key factors:

- The task transfer scenarios are broad
- **2** The task transfer cost is low.

https://github.com/Computer-Vision-in-the-Wild/CVinW_Readings

1 CVinW vs other CV settings

2D space for the definition of adaptation cost

Where to start?

ELEVATER:

A Benchmark and Toolkit for Evaluating Language-Augmented Visual Models

https://arxiv.org/abs/2204.08790 NeurIPS 2022 (Benchmarks and Datasets Track)

Chunyuan Li*^{1♠}, Haotian Liu*², Liunian Harold Li³, Pengchuan Zhang¹, Jyoti Aneja¹ Jianwei Yang¹, Ping Jin¹, Houdong Hu¹, Zicheng Liu¹, Yong Jae Lee², Jianfeng Gao¹ ¹Microsoft ²University of Wisconsin–Madison ³UCLA

Benchmarks: **ELEVATER**

- Dataset Suite
- Image Classification: 20 datasets

Flowers 102 DTD Food 101
Country 211 RESISC45
FGVCAircraft Caltech 101
FER 2013 Kitti Distance Euro Sat VOC 2007
Stanford Cars MNIST GTSRB
Oxford Pets CIFAR 100 CIFAR 10

• Object Detection: **35** datasets

ChessPieces
NorthAmericalMushrooms
OpenPoetryVision
WebsiteScreenshots
Aquarium
Dice
Dice
AmericanSignLanguageLetters
UnoCards
VehiclesOpenImages
VehiclesOpenImages
SelfDrivingCar
ShellfishopenImages
PascalVOC
AerialMaritimeDrone(large)
AerialMaritimeDrone(large)
Pistols
PlantdOC
Raccoon
HardHardharkorkers
Advarium
Dice
BoggleBoardShermalDogsAndPeople
OxfordPets(species)BCCD
MaskWearing
CottontailRabbits
MountainDewCommercial
SelfDrivingCar
OxfordPets(breed)
EgoHands(specific)
AerialMaritimeDrone(tiled)EgoHands(generic)

External Knowledge

WordNet, Wiktionary, GPT-3

☐ Concept name: risotto

 Def_wik: An Italian savoury dish made with rice and other ingredients

 Def_wn: rice cooked with broth and sprinkled with grated cheese

Path_wn: [risotto, dish, nutriment, food, substance, matter, physical_entity, entity]

GPT3: A rice dish made with arborio rice and typically served with meat or fish

Benchmarks: A more diverse set of tasks

Where to submit results? Challenge → Track → Phase

Challenge	Track	Definition (*IN = ImageNet)
	Industry	No IN-1K data; Scaling Success
ICinW	Academic	No IN-1K data; Limited pretrain data (IN21K. CC3M+12M, YFCC15M)
Image Classification in the Wild	ImageNet-1K in Pretraining	IN1K is allowed in pretraining, eg, self-supervised Learning
	Parameter-Efficiency	Efficient model adaption methods
ODinW	Zero-Shot	No Training examples in ODinW are used
Object Detection in the Wild	Full-shot	All Training examples in ODinW are used

A collaborative community-effort

-- to benchmark the SOTA foundation vision models

Challenge Talks

-- one talk for each track

- ICinW Industry Track | Chinese CLIP | Junyang Lin (Alibaba)
- ICinW Academic Track | K-LITE | Sheng Shen (University of California, Berkeley)
- ICinW ImageNet-1K in Pre-training | Bamboo | Yuanhan Zhang (Nanyang Technological University)
- ICinW Parameter-Efficiency | ProDA | Yuning Lu (University of Science and Technology of China)
- ODinW Zero-Shot Track | DetCLIP | Jianhua Han (Huawei)
- ODinW Full-Shot Track | DINO | Shilong Liu (IDEA & Tsinghua)

Criterion

- Ranking: Top ranked methods by October 20, 2022 (3 days ago)
- Availability: Make a video presentation before Challenge
- Deduplication: No duplicated presentation between workshop paper and challenge
- Note: The ranking has been changing in the past 3 days

- Larger models are better (4B > 1.6B > 1.0B > 0.4B)
- Foreign image-text pre-training is effective to IC in English
- Generative models such as GIT has a large space to improve for IC
- ALIGN is comparable with CLIP

20 datasets 19 datasets

Team	Method	Average Score	Rank	Average Score**	Rank	# Model Params [M]	# Vision Backbone Params [M]
Microsoft	Turing Bletchley v2	73.5	1	73.6	1	4,240.3	3,668.84
TinyCLIP	X-CLIP	71.2	2	71.8	2	1,602.1	992.71
clip	clip	69.1	3	69.4	3	986.1	632.08
ELEVATER	CLIP [ViT-L/14 336x336]	66.8	4	67.2	4	427.9	304.29
OFA-Team	Chinese CLIP [ViT-H/14-	62.3	5	62.7	6	957.6	632.08
ELEVATER	CLIP [ViT-B/16]	60.0	6	60.1	8	149.7	86.19
eceipeno	eceipeno	57.2	7	57.5	9	182.3	86.65
ELEVATER	CLIP [ViT-B/32]	56.8	8	56.9	10	151.3	87.85
GIT - Single Ge	nerative Model	55.3	9	55.6	11	0.0	638.52
YT	pclip	54.9	10	55.0	12	151.6	88.14
DeCLIP	DeCLIP [ViT-B/32]	51.0	11	50.8	13	154.6	89.82
cathy4k	Chinese CLIP					406.8	303.97
ALIGN_LARGE				67.0	5	304.0	304.00
ALIGN				62.1	7	86.0	86.00

Zero-shot on 20 datasets in ICinW

Zero-shot

- MaskCLIP ranks 1st on ICinW
- External knowledge is useful
- The conclusions are inconsistent between ICinW and ImageNet-1K;
 Be more careful when designing architectures and objectives
- Not all models outperform CLIP trained on YFCC

Rank	Team	Method	Average Score	# Model Params [M]	# Vision Backbone Params [M]	[Ref.] ImageNet-1K
1	DLight	MaskCLIP	48.9	196.0	94.22	56.5
2	KLITE	Swin-B; 3 datasets	45.5	150.7	86.74	57.8
3	YT	YT-CLIP	44.5	151.2	87.79	52.9
4	ELEVATER	UniCL + FocalB [3 datasets]	44.0	155.4	91.44	54.2
5	Gramer	UniCL [SwinB, 3 datasets]	43.2	150.7	86.74	52.2
6	ELEVATER	UniCL+ViT-B [IN21K + GCC]	42.4	149.6	85.8	45.1
7	ELEVATER	UniCL+FlatFocal-B [IN21K + GCC]	41.8	150.5	86.65	47.4
8	ELEVATER	UniCL+DaViT-B [IN21K + GCC]	40.4	150.9	86.93	47.3
9	ELEVATER	UniCL+Focal-B [IN21K+GCC]	39.5	155.4	91.44	47.1
10	DeCLIP	DeCLIP [ViT-B/32, YFCC-15M]	37.9	154.6	89.82	
11	FILIP	FILIP(ViT-B32,YFCC15M)	34.5	177.3	88.05	
12	ELEVATER	CLIP [VIT-B/32, YFCC-15M]	32.0	151.3	87.85	
13	SLIP	SLIP (VIT-B/YFCC-15M)	31.2	172.3	87.85	
14	ELEVATER	SLIP (YFCC15M)	31.2	172.3	87.85	
15	MS-CLIP	MS-CLIP (ViT/B32 YFCC)	30.3	132.4	86.89	36.5
16	ELEVATER	UniCL [Swin-T, ImageNet-21K]	27.2	91.4	27.52	
17	CyCLIP	CyCLIP + [ResNet-50, GCC-3M]	25.8	102.0	38.32	22.0
18	ELEVATER	ResNet-50, GCC-3M	25.3	102.0	38.32	19.8

- Bamboo ranks 1st on ICinW;
 Data-centric Al is effective
- Image self-supervised learning methods are popular
- Zero-shot FLAVA outperforms FT and LP many models

Rank	Team	Method	Average Score	# Vision Backbone Params [M]	# Trainable Params [K]
1	Bamboo	Bamboo-ViTB/16 LP	63.7	85.8	34.6
2	ELEVATER	ViT [ViT-B/16, LP]	57.6	85.8	44.3
3	ELEVATER	ViT [ViT-B/16, FT]	57.2	85.8	85842.96
4	Amazon-m5	DeCL [ViT-B/16, LP]	54.7	85.8	85842.96
5	CACR	CACR [ViT-B/16, LP]	54.5	86.57	7.69
6	ELEVATER	DeiT [ViT-B/16, LP]	54.1	85.8	44.3
7	ELEVATER	DeiT [ViT-B/16, FT]	54.1	85.8	85842.96
8	CACR	CACR [ViT-B/16, LP]	53.6	86.57	7.69
9	ELEVATER	MoCo-v3 [ViT-B/16, LP]	50.2	85.8	44.3
10	CACR	CACR [ViT-B/16, FT]	48.9	86.57	86424.05
11	Facebook Al Research	FLAVA (PMD-ZeroShot)	48.7	241.36	0.0
12	Bamboo	Bamboo-ViTB/16 FT	48.4	85.8	85833.26
13	SupMAE	SupMAE [ViT-B/16, FT]	46.8	85.8	85842.96
14	CAE v1	Baidu (CAE v1 [ViT-B/16, LP])	44.1	85.81	44.26
15	ELEVATER	MoCo-v3 [ViT-B/16, FT]	39.3	85.8	85842.96
16	CAE v1	Baidu (CAE v1 [ViT-B/16, FT])	37.9	85.81	85807.87
17	ELEVATER	MAE [ViT-B/16, FT]	36.1	85.8	85842.96
18	ELEVATER	MAE [VIT-B/16, LP]	33.4	85.8	44.3
19	ELEVATER	From-Scratch [ViT-B/16, FT]	20.8	85.8	85842.96
20	CV-Team	ViT-Contrastive	20.7	86.57	86570.73
21	ELEVATER	From-Scratch [ViT-B/16, LP]	19.6	85.8	44.3

ProDA ranks the 1st

 Advanced adaptation methods from NLP are not really better than linear probing?

Rank	Team	Method	Accuracy- Efficiency Metric	Average Score	# Vision Backbone Params [M]	# Trainable Params [K]
1	ProDA	ProDA [CLIP, ViT-B/16]	0.71	70.7	86.19	262.14
2	ELEVATER	Linear Probe [CLIP, ViT-B/16]	0.68	68.3	86.19	29.57
3	PEViT-Adapter	Adapter [CLIP, ViT-B/32]	0.65	65.1	89.06	1211.65
4	ELEVATER	Linear Probe [CLIP, ViT-B/32]	0.65	65.3	87.85	29.57
5	PEViT-LoRA	LoRA [CLIP, ViT-B/32]	0.61	61.5	88.0	151.05
6	ELEVATER	Ref: Zero-Shot [CLIP, ViT-B/16]	0.6	60.0	86.19	0.0
7	ELEVATER	Ref: Zero-Shot [CLIP, ViT-B/32]	0.57	56.8	87.85	0.0
8	ELEVATER	Fine-tuning [CLIP, ViT-B/16]	0.53	69.1	86.19	86222.21
9	ELEVATER	Fine-tuning [CLIP, ViT-B/32]	0.48	63.3	87.85	87878.78

- Florence ranks 1st with average;
- DetCLIP ranks 1st with median
- Larger pre-training dataset leads to better performance; Though MDETR trained on a small dataset, the results are not bad

Common	Robust
Metric	Metric

Rank	Team	Method	Average Score	Median Score
1	Florence	FL-1.5-D5	25.8	14.3
2	DetCLIP-team	DetCLIP	24.9	18.3
3	GLIPv2_team	GLIPv2-T	22.3	8.9
4	OmLab	OmDet	19.7	8.9
5	ODinW_Team	GLIP-T	19.6	5.1
6	FIBER	FIBER	19.5	10.4
7	OmLab	OmDet	19.0	8.9
8	Google Research	OWL-ViT L/14 @ 672	18.8	9.8
9	ODinW_Team	GLIP-T (B)	12.8	2.2
10	ODinW_Team	GLIP-T (A)	11.4	1.6
11	MDETR-NYU	MDETR - ENB5	10.7	3.0
12	MDETR-NYU	MDETR - ENB3	10.1	2.7
13	MDETR-NYU	MDETR - R101	9.9	3.1

- OmLab ranks 1st with average and median;
- DINO, the best performing OD head on COCO, performs well on ODinW

Full-Shot:

Rank	Team	Method	Average Score	Median Score
1	OmLab	OmDet	67.1	71.2
2	IDEA-CVR-DINO	DINO-SwinT	66.7	68.5
3	OmLab	OmDet_Base	65.7	65.7
4	IDEA-CVR-DINO	DINO-SwinT(Merged	65.3	65.1
6	ODinW_Team	DyHead-T	63.2	64.9
7	ODinW_Team	GLIP-T	62.6	62.1

Few-Shot:

Rank	Team	Method	Average Score	Median Score
1	OmLab	OmDet	42.4	41.7
2	IDEA-CVR-DINO	DINO-SwinT	41.2	41.1
3	ODinW_Team	GLIP-T	38.9	33.7
4	ODinW_Team	DyHead-T	37.5	36.7

Call for Collaboration

-- benchmarking the transfer ability of SoTA vision models

Criterion

- Goals:
 - Summary of Challenge results on ICinW and ODinW
 - A comprehensive technical report to benchmark the best vision checkpoints and adaptation methods
 - A shared view to push CVinW
- Authorship: Contributors with valid submissions are encouraged to co-author the report
- Timeline: The 1st version by the end of 2022; Continual updating arXiv when necessary
- Inspiring Examples BIGBench and BigScience in NLP
- Future Update

https://computer-vision-in-the-wild.github.io/eccv-2022/

Challenge Presentation Agenda

https://computer-vision-in-the-wild.github.io/eccv-2022/

Talk	Challenge	Track
1		Industry
2	ICinW	Academic
3		ImageNet-1K in Pretraining
4		Parameter-Efficiency
5	ODinW	Zero-Shot
6		Full-shot