

Open-Vocabulary Visual Perception upon Frozen Vision and Language Models

Yin Cui Research Scientist, Google

Google Research

Workshop on Computer Vision in the Wild @ECCV 2022 Oct 23, 2022 01

Background

Vision and Language Models

- Traditional vision models:
 - Pre-training: fixed set of discretized labels (e.g., ImageNet, 1000 classes)
 - Downstream transfer: weight initialization for fine-tuning, no open-vocabulary capability
- Vision and language models:
 - Pre-training: large-scale image-text pairs (e.g., CLIP, 400M web image-text pairs)
 - Downstream transfer: direct "zero-shot" or fine-tuning, open-vocabulary capability through vision-language alignment

Dataset collection for large vocabulary detection

Dataset	# images	# boxes	# categories
Pascal VOC	11.5k	27k	20
СОСО	159k	896k	80
Objects 365	1800k	29,000k	365
LVIS v1.0	159k	1,514k	1203

Challenge: Long-tailed distribution

- A few dominant classes claim most of the data, while most classes have few examples
- Exponentially more data might be needed for rare classes
 - Expensive for tasks requiring extensive annotations: detection, segmentation, video, etc.
- Alternatives?

Number of instances per class in LVIS dataset

Open-Vocabulary Visual Perception upon Vision and Language Models

ViLD: Detection via Distillation

- Mask R-CNN with frozen CLIP text encoder: class embeddings as classifiers
- Training:
 - Offline extract CLIP image embeddings on some cropped and resized regions (similar to R-CNN)
 - Online training of Mask R-CNN on **base** classes with distillation between Mask R-CNN region embeddings and offline CLIP image embeddings
- Inference: Online extract **novel** class embeddings, then use pre-trained Mask R-CNN

Paper: Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, Yin Cui. Open-vocabulary Object Detection via Vision and Language Knowledge. ICLR 2022. Code: https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild Demo: https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild Demo: https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild Demo: https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/vild

OpenSeg: Segmentation via Aligning Regions with Captions

• Supervision: class-agnostic segmentation + image caption

Paper: Golnaz Ghiasi, Xiuye Gu, Yin Cui, Tsung-Yi Lin. Scaling Open-Vocabulary Image Segmentation with Image-Level Labels. ECCV 2022. (Vision + Language Session) Code: <u>https://github.com/tensorflow/tpu/tree/master/models/official/detection/projects/openseg</u> Demo: <u>https://colab.sandbox.google.com/github/tensorflow/tpu/blob/master/models/official/detection/projects/openseg/OpenSeg_demo.ipynb</u>

Open-Vocabulary Visual Perception upon Frozen Vision and Language Models

02

Frozen VLMs \rightarrow Object Detection

F-VLM: Open-Vocabulary Object Detection upon Frozen Vision and Language Models <u>https://arxiv.org/abs/2209.15639</u>

Weicheng Kuo, Yin Cui, Xiuye Gu, AJ Piergiovanni, Anelia Angelova

Frozen CLIP is a good localizer and a good region classifier

- CLIP features are
 - locality sensitive for describing object shapes via simple k-means clustering (k=6)
 - \circ $\,$ $\,$ discriminative for region classification on ground truth regions from LVIS $\,$

F-VLM Training

- During training, F-VLM is simply a detector with the last classification layer replaced by base-category text embeddings.
- We only train the detector head (RPN, FPN and Mask R-CNN heads) and keep the pretrained VLM image and text encoder frozen.

F-VLM Inference

- At test time, we use the region proposals to crop out the top-level features of the VLM vision encoder and compute the VLM score per region. VLM pooling is an attention layers used in CLIP.
- We combine the detection score and the VLM score for open-vocabulary detection of unseen classes.

Results on LVIS Open-Vocabulary Benchmark

- Base: 866 LVIS frequent + common classes (10-1977 images per class)
- Novel: 337 LVIS rare classes (<10 images per class)
- State-of-the-art on LVIS novel classes (+6.5 AP)

Backbone	Pretrained CLIP	Method	Distill	Trainable Backbone	AP_r	AP
R50 Compa	rison:					
R50	ViT-B/32	ViLD (Gu et al., 2022)	1	1	16.1	22.5
R50	ViT-B/32	ViLD-Ens. (Gu et al., 2022)	1	1	16.6	25.5
R50	ViT-B/32	DetPro (Du et al., 2022) [‡]	1	1	19.8	25.9
R50	ViT-B/32	Detic-ViLD (Zhou et al., 2022c)*	X	1	17.8	26.8
R50	R50	RegionCLIP (Zhong et al., 2022) [†]	1	1	17.1	28.2
R50	R50	F-VLM (Ours)	X	×	18.6	24.2
System-leve	el Comparisor	1:				
R152	ViT-B/32	ViLD (Gu et al., 2022)	1	1	18.7	23.6
R152	ViT-B/32	ViLD-Ens. (Gu et al., 2022)	1	1	18.7	26.0
EN-B7	ViT-L/14	ViLD-Ens. (Gu et al., 2022)	1	1	21.7	29.6
EN-B7	EN-B7*	ViLD-Ens. (Gu et al., 2022)	✓	1	26.3	29.3
R50	ViT-B/32	DetPro-Cascade (Du et al., 2022) [‡]	1	1	20.0	27.0
R50	ViT-B/32	Detic-CN2 (Zhou et al., 2022c)*	×	1	24.6	32.4
R50x4	R50x4	RegionCLIP (Zhong et al., 2022) [†]	1	1	22.0	32.3
ViT-L/14	_ViT-L/14	OWL-ViT (Minderer et al., 2022)	<u>×</u>	· · · · · · · · · · · · · · · · · · ·	25.6	34.7
R50x4	R50x4	F-VLM (Ours)	X	×	26.3	28.5
R50x16	R50x16	F-VLM (Ours)	X	×	30.4	32.1
R50x64	R50x64	F-VLM (Ours)	×	×	32.8	34.9

Cross-Dataset Transfer

• LVIS base \rightarrow COCO, Objects 365, Ego4D

Mathad		COCO		Objects365		
Method	AP	AP_{50}	AP ₇₅	AP	AP_{50}	AP ₇₅
Supervised (Gu et al., 2022)	46.5	67.6	50.9	25.6	38.6	28.0
ViLD-R50 (Gu et al., 2022)	36.6	55.6	39.8	11.8	18.2	12.6
DetPro-R50 (Du et al., 2022)	34.9	53.8	37.4	12.1	18.8	12.9
F-VLM-R50 (Ours)	32.5	53.1	34.6	11.9	19.2	12.6
F-VLM-R50x4 (Ours)	36.0	57.5	38.7	14.2	22.6	15.2
F-VLM-R50x16 (Ours)	37.9	59.6	41.2	16.2	25.3	17.5
F-VLM-R50x64 (Ours)	39.8	61.6	43.8	17.7	27.4	19.1

Google Research

LVIS Novel Categories

Objects365 Transfer

Ego4D Transfer

Training Efficiency

- 14x 226x less training cost (TPUv3 per-core-hour) compared with the best ViLD model
- Great potential to be incorporated with gigantic VLMs for both fine-tuning or co-training

Method	Mask AP _r	#Iters	Epochs	Training Cost (Per-Core-Hour)	Training Cost Savings
ViLD-EN-B7 (Gu et al., 2022)	26.3	180k	460	8000	$1 \times$
F-VLM (Ours) F-VLM (Ours) F-VLM (Ours)	32.8 31.0 27.7	46.1k 5.76k 2.88k	118 14.7 7.4	565 71 35	14× 113× 226 ×

Frozen VLMs → Multimodal Video

MOV: Multimodal Open-Vocabulary Video Classification via Pre-Trained Vision and Language Models <u>https://arxiv.org/abs/2207.07646</u>

Rui Qian, Yeqing Li, Zheng Xu, Ming-Hsuan Yang, Serge Belongie, Yin Cui

Frozen VLM is a good video classifier

- Benchmark on Kinetics-400 video action classification
- Frozen CLIP vision encoder with a trainable light-weight head
- Frozen CLIP text encoder to extract class embeddings as classifiers

Model	Head	Prompt	Training	Kinetics Top-1
CLIP VIT-B/16	Avg Pool	80 ImageNet	No (0-shot)	54.9
CLIP VIT-B/16	Avg Pool	28 Video	No (0-shot)	59.3 (+4.4)
CLIP VIT-B/16	Avg Pool	28 Video	Linear	74.5 (+15.2)
CLIP VIT-B/16	TFM + Avg Pool	28 Video	Linear	77.2 (+2.7)
SlowFast	-	-	E2E Training	79.8
TimeSformer	_	_	E2E Training	78.0
ViViT-B	_	_	E2E Training	80.0

Pre-trained VLM for multimodal video

- Frozen CLIP for video
- Audio and motion naturally co-exist with video
- Pre-trained CLIP for
 - Audio Spectrogram
 - duplicate to a 3-channel image; bilinearly interpolating the positional encoding
 - Optical Flow
 - 2-channel x-y motion + zero-padded 3rd channel \rightarrow 3-channel image

Fine-tuning VLM for multimodal open-vocabulary video

- Kinetics, VGGSound datasets: train on base classes, eval on both base and novel classes
- Observations:
 - All modalities are able to improve on base classes
 - With base class training, flow and audio can generalize to novel classes while video cannot
- How can we build a model to leverage audio and flow to help video?

Overview of MOV

- Transformer head for temporal fusion
- Asymmetrical cross-attention to fuse multimodal information

Open-Vocabulary video classification

- Kinetics (Video, Flow, Text) and VGGSound (Video, Audio, Text)
 - Outperforms multimodal method VATT, frozen CLIP, and CLIP adaptation methods (CoOp, CLIP-Adapter)

method	modalities	base acc.	novel acc.	harmonic mean
VATT (Akbari et al., 2021)	V, T	19.8	21.6	20.7
CLIP (Radford et al., 2021)	V, T	51.2	56.7	53.8
CoOp (Zhou et al., 2021)	V, T	58.9	45.7	51.5
CLIP-Adapter (Gao et al., 2021)	V, T	66.5	36.2	46.9
MOV (Ours)	V, F, T	(+8.8) 75.3	(+1.4) 58.1	(+11.8) 65.6
moth o d	madalitiaa	hara		hammaniamaan
method	modalities	base acc.	novel acc.	harmonic mean
method VATT (Akbari et al., 2021)	modalities V, A, T	base acc. 21.6	novel acc. 23.7	harmonic mean 22.6
method VATT (Akbari et al., 2021) CLIP (Radford et al., 2021)	modalities V, A, T V, T	base acc. 21.6 48.5	novel acc. 23.7 48.8	harmonic mean 22.6 48.6
method VATT (Akbari et al., 2021) CLIP (Radford et al., 2021) CoOp (Zhou et al., 2021)	modalities V, A, T V, T V, T	base acc. 21.6 48.5 56.9	novel acc. 23.7 48.8 42.0	harmonic mean 22.6 48.6 48.3
method VATT (Akbari et al., 2021) CLIP (Radford et al., 2021) CoOp (Zhou et al., 2021) CLIP-Adapter (Gao et al., 2021)	modalities V, A, T V, T V, T V, T V, T	base acc. 21.6 48.5 56.9 60.0	novel acc. 23.7 48.8 42.0 27.5	harmonic mean 22.6 48.6 48.3 37.7

Scalability of MOV

- MOV scales well with a stronger ViT-L/14 backbone.
 - CLIP's improvements translates well to MOV for novel classes

mathad	haalthana	Kineti	cs-700	VGGSound		
memou	Dackoone	base acc.	novel acc.	base acc.	novel acc.	
CLIP (Radford et al., 2021)	ViT-B/16	51.2	56.7	48.5	48.8	
CLIP (Radford et al., 2021)	ViT-L/14	59.6	65.3	52.6	54.1	
MOV (Ours)	ViT-B/16	75.3	58.1	68.4	51.5	
MOV (Ours)	ViT-L/14	(+4.8) 80.1	(+8.8) 66.9	(+3.5) 71.9	(+4.6) 56.1	

Multimodal improvement analysis

• Per-class improvement on Kinetics and VGGSound due to additional modality

(a) Kinetics with additional flow modality

(b) VGGSound with additional audio modality

Cross-Dataset Transfer on UCF and HMDB

- UCF* and HMDB* are used extensively by existing zero-shot methods where we randomly choose 50% of the classes for training and evaluate on the rest 50% (10 runs)
- MOV achieves state-of-the-art, outperforming both traditional zero-shot methods and most recent CLIP-adaptation methods by large margins

method	vision ^{\dagger} + text ^{\ddagger}	pre-train [§]	UCF*/UCF	HMDB*/HMDB
GA (Mishra et al., 2018)	C3D + W2V	S1M	17.3±1.1/ -	19.3±2.1 / -
TARN (Bishay et al., 2019)	C3D + W2V	S1M	19.0±2.3/ -	19.5±4.2/ -
CWEGAN (Mandal et al., 2019)	I3D + W2V	IN, K400	26.9±2.8/ -	30.2±2.7 / -
TS-GCN (Gao et al., 2019)	GLNet + W2V	IN-shuffle	34.2±3.1/ -	23.2±3.0/ -
PS-GNN (Gao et al., 2020)	GLNet + W2V	IN-shuffle	36.1±4.8/ -	25.9±4.1 / -
E2E (Brattoli et al., 2020)	R(2+1)D + W2V	K700	48.0/37.6	32.7 / 26.9
DASZL (Kim et al., 2021)	TSM + Attributes	IN, K400	48.9±5.8/ -	- / -
ER (Chen & Huang, 2021)	TSM + BERT	IN, K400	51.8±2.9/ -	35.3±4.6/ -
ResT (Lin et al., 2022)	RN101 + W2V	K700	58.7±3.3 / 40.6	41.1±3.7 / 34.4
MIL-NCE (Miech et al., 2020)	S3D + W2V	HT100M	- / 29.3	- /10.4
VideoCLIP (Xu et al., 2021)	S3D + TSF	HT100M	- / 22.5	- /11.3
VATT (Akbari et al., 2021)	ViT + TSF	HT100M	- /18.4	- /13.2
CLIP (Radford et al., 2021)	ViT-B/16 + TSF	WIT	79.9±3.8 / 73.0	54.0±4.1/46.1
ActionCLIP (Wang et al., 2021)	ViT-B/16 + TSF	WIT^+	- / 69.5	- / 50.5
X-CLIP (Ni et al., 2022)	ViT-B/16 + TSF	WIT^+	- /72.0	- / 44.6
MOV (Ours)	ViT-B/16 + TSF	WIT^+	82.6±4.1 / 76.2	60.8±2.8 / 52.1
MOV (Ours)	ViT-L/14 + TSF	WIT^+	87.1±3.2 / 80.9	64.7±3.2 / 57.8

† vision encoder: C3D (Tran et al., 2015), I3D (Carreira & Zisserman, 2017), GLNet (Szegedy et al., 2015), R(2+1)D (Tran et al., 2018), TSM (Lin et al., 2019), RN101 (He et al., 2016), S3D (Xie et al., 2018), ViT (Dosovitskiy et al., 2021).
‡ text encoder: W2V (Mikolov et al., 2013), BERT (Devlin et al., 2019), TSF (Vaswani et al., 2017).

§ pre-train data: S1M (Karpathy et al., 2013), ISEK (Devine et al., 2019), ISE (Vaswani et al., 2017).

et al., 2019), HT100M (Radford et al., 2021), WIT (Radford et al., 2021), WIT⁺ has additional training on Kinetics.

Cross-Dataset Transfer on UCF and HMDB

- 72.0 → 87.1 on UCF (+15.1)
- 44.6 → 64.7 on HMDB (+20.1)

Zero-Shot Action Recognition

Zero-Shot Action Recognition on UCF101

2 Zero-Shot Action Recognition

Zero-Shot Action Recognition on HMDB51

Conclusion

- Utilizing pre-trained VLMs has become a promising paradigm for open-vocabulary visual perception (Detection, Segmentation, Video, etc.)
- It's possible to greatly simplify the paradigm by directly building upon frozen VLMs with minimal modifications
 - In F-VLM: Frozen VLMs are strong object localizer and region classifier
 - In MOV: Frozen VLMs are strong video classifier and can be further improved by fine-tuning on additional modalities like audio and flow
- Other than being performant models, other advantages of building upon frozen VLMs are
 - Reduced training computation and memory
 - Potential of scaling to gigantic foundation models and co-training with foundation models

Acknowledgement of Co-Authors

Xiuye Gu Google

Weicheng Kuo Google

Golnaz Ghiasi Google

Rui Qian Cornell

Tsung-Yi Lin Nvidia

AJ Piergiovanni Google

Yeqing Li Google

Zheng Xu Google

Ming-Hsuan Yang Google / UC Merced

Anelia Angelova Google

Serge Belongie University of Copenhagen