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Abstract. Few-Shot learning aims to train and optimize a model that
can adapt to unseen visual classes with only a few labeled examples. The
existing few-shot learning (FSL) methods, heavily rely only on visual
data, thus fail to capture the semantic attributes to learn a more gener-
alized version of the visual concept from very few examples. However, it is
a known fact that human visual learning benefits immensely from inputs
from multiple modalities such as vision, language, and audio. Inspired
by the human learning nature of encapsulating the existing knowledge of
a visual category which is in the form of language, we introduce a con-
trastive alignment mechanism for visual and semantic feature vectors to
learn much more generalized visual concepts for few-shot learning. Our
method simply adds an auxiliary contrastive learning objective which
captures the contextual knowledge of a visual category from a strong
textual encoder in addition to the existing training mechanism. Hence,
the approach is more generalized and can be plugged into any existing
FSL method. The pre-trained semantic feature extractor (learned from
a large-scale text corpora) we use in our approach provides a strong con-
textual prior knowledge to assist FSL. The experimental results done in
popular FSL datasets show that our approach is generic in nature and
provides a strong boost to the existing FSL baselines.

Keywords: Few-Shot Image Classification, Vision-Language Learning,
Contrastive Learning

1 Introduction

In recent years, deep neural networks have already outperformed humans on
image classification with enormous labeled samples supported, which may be
against human learning behavior. Humans, however, possess a fast adaptive ca-
pacity of recognizing novel classes with a handful of annotated samples. For
example, a child can easily generalize the concept of cats and quickly recognize
them in reality with only one picture from a book or the Internet. In contrast,
existing data-driven deep learning algorithms lag far behind humans in versatil-
ity and generalization ability. Therefore, how to construct human-like algorithms
and perform visual recognition tasks under data scarcity has important practi-
cal value, which also has attracted extensive research interest. To overcome this
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challenge, few-shot learning (FSL) is introduced for image classification which
can learn and generalize from limited data.

The main paradigm of FSL is training a model on the base classes and requir-
ing it to accurately classify the novel classes with a limited number of examples,
which is still threatened by data scarcity. There are various initial line of works
study the problem of few-shot learning for image classification [22, 18, 9, 6] and
establish strong baselines to improve on top. Meta-learning used to be predomi-
nant approach to solve FSL then. However, some recent works adopted standard
supervision setting [20] along with various self-supervised approaches [15, 10, 19]
to enhance the quality of the results. However, it is to be noted that visual cate-
gories being identified only using class labels (numerical IDs) will seriously limit
the contextual features of the category since only a limited number of examples
are provided. Identifying this gap, recent line of works [24, 17, 12, 2] adapted us-
ing semantic features as a prior knowledge or an auxiliary training mechanism
to enhance the FSL performance. RS-FSL [2] is the recent among all to lever-
age categorical descriptions to perform few-shot image classifcation. However,
it is to be noted that our method utilizes contrastive multimodal alignment for
FSL which has never been used in the literature to the best of our knowledge.
Further, our approach investigates both visual and semantic attributes in the
feature level while RS-FSL predicts the descriptions using the hybrid prototype.
The goal of our work is to capture the detailed semantic features and feed it to
the visual feature extractor which can then be easily adopted novel categories
with very few examples.

In this work we study the effectiveness of contrastive learning which has
been proved to perform well [5, 4] in standard self-supervised learning. It has
also been adapted to multimodal setting as well [14, 13, 1]. We utilize the simple
contrastive learning objective as an auxilliary training mechanism in addition to
the standard FSL baseline to provide the contextual knowledge to the model via
the semantic prototype generated using a designated semantic feature extractor.
We align both the semantic and visual prototypes of each class during an episode
of training and employ the contrastive learning learning objective such that the
corresponding prototypes regardless of the modalities to be embedded close to
each other in the multimodal embedding space. This facilitates a prior knowledge
to the visual feature extractor on the semantic attributes of the visual category
which is crucial in few-shot image classification.

The major contribution of this approach can be summarized as follows:

– We show that a simple contrastive alignment of visual and semantic feature
vectors in the embedding space formulates a generalizable visual understand-
ing to perform few-shot image classification.

– We introduce an auxiliary contrastive learning objective on top of the exist-
ing FSL approach, hence our method is a more generic approach and can be
plugged into any of the FSL baselines.

– Our experimental results on two standard FSL benchmarks show that mul-
timodal contrastive alignment improves the performance of the standard
baselines in FSL problem.
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Fig. 1. Overall architecture of VS-Alignment for few-shot image classification. Given
a support set of images and corresponding class-level descriptions, fθ will obtain the
visual prototype buy averaging the visual vectors and gθ will create the semantic pro-
totype by averaging the semantic feature vectors. During training we employ both the
standard cross-entropy (between visual prototype and ground-truth label of query im-
age) and the contrastive alignment (visual and semantic prototypes) as the learning
objectives.

2 Proposed Method

In this work, we revisit the contrastive learning objective and leverage it as an
auxiliary learning objective in the baseline few-shot learning approach. Given
a support set and query images, we introduce an auxiliary contrastive align-
ment between visual and semantic prototypes to enhance the contextual visual
knowledge of the visual prototypes. We utilize Meta-baseline [7] as our base-
line approach and in Sec. 3 we study the generalizability of our approach with
multiple standard FSL baselines.

This section begins with defining the few-shot learning problem for image
classification (Sec. 2.1), followed by explaining about Meta-baseline [7] for FSL
(Sec. 2.2) and finally the descriptions of the proposed add-on architecture to
establish the visual-semantic contrastive alignment (Sec. 2.3). We name our ap-
proach as VS-Alignment.

2.1 Problem Definition

The standard few-shot image classification paradigm comprises base classes
Cbase, in which there are enough image samples per class and novel classes Cnovel,
where only a limited number of samples are present in each class. The class set
between base and novel classes are disjoint i.e., Cbase ∩ Cnovel = ϕ. In general,
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FSL models are trained on K-shot, and N-way episodes. Each episode is created
by first sampling N categories from the training set and then sampling two sets
of images from these categories: (i) the support set Se = (si, yi)

N×K
i=1 containing

K examples for each of the N categories and (ii) the query set Qe = (qj , yj)
Q
j=1

containing Q different examples from the same N categories. After training in
this episodic training paradigm, the model is then evaluated in the novel classes
(Cnovel) in the same N-way K-shot setting.

2.2 Meta-Baseline for FSL

We adopt the popular and recent baseline named Meta-baseline [7] to validate
our argument of incorporating multimodal contrastive alignment for few-shot
image classification enhances the contextual knowledge, hence improving the
performance. Prior works to meta-baseline investigated the FSL problem us-
ing standard supervision setting [20, 15] and episodic learning (meta-learning)
setting [22, 18] separately. However, incorporation of both standard supervision
and meta-learning arguably produced better results in standard FSL datasets
as mentioned by meta-baseline [7].
Classification. During this stage, the model is trained in the base classes Cbase
in a standard supervision setting. Given a dataset of image (x) and label (y ∈
Cbase) pairs: Dbase = xi, yi, the classifier network f maps the input image to a
visual feature vector. The visual feature vector is then transformed to the label
space to produce the logit p using a linear classifier. This process happens end-
to-end and the standard cross-entropy loss is deployed as the learning objective
as the following:

Lclass = −log
exp(py)∑
j exp(pj)

(1)

After the classification stage, the last linear classifier layer is removed and
the existing embedding module which maps the input image to a visual feature
vector is extracted to the meta-learning stage.
Meta-Learning. During this stage, the episodic learning paradigm has been
exploited on top of the supervised trained embedding module. Given a few-
shot task with support set Se, a prototype pc corresponding to class c ∈ Cbase
is computed by averaging the embeddings of all support samples belonging to
class c:

pc =
1

|Sc
e |

∑
(si,yi)∈Sc

e

fθ(x) (2)

where fθ is the pre-trained visual embedding module. The evaluation is done
on the query set Qe with the ability of predicting the probability that sample qj
belongs to class c according to the cosine similarity between the embedding of
sample qj and pc:

p(y = c|qj , Se) =
exp(τ · ⟨fθ(qj), pc⟩)∑
k exp(τ · ⟨fθ(qj), pk⟩)

(3)
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Here, ⟨., .⟩ stands for cosine similarity and k ranges for all the classes in the
support set of the episode. The learning objective at this stage is a cross-entropy
loss computed from p and the labels of the samples in the query- set. During
training, each training batch can contain several tasks and the average loss is
computed.

2.3 VS-Alignement for FSL

With the understanding the potential of contrastive learning which has been
immensly deployed in multimodal learning [14, 13], we adopted an auxilliary
contrastive alignment between the visual and semantic features to enhance the
few-shot image classification. To this end, as depicted in Fig. 1 we deploy a se-
mantic feature extractor gθ which can map the categorical descriptions available
to a semantic embedding space as semantic feature vectors. Similar to Eqn. 2, we
design a semantic prototype for each class in the support set of the given few-shot
episode. We incorporate the proposed multimodal contrastive alignment only on
the meta-learning stage of the baseline approach and the classification stage is
performed without any modification.

We utilize a transformer model [21] similar to what is in CLIP [14] textual
encoder to perform the semantic feature extraction. More details on the imple-
mentation will be explained in Sec. 3. For each class c ∈ Cbase, it is given that
we have access to dc number of categorical descriptions (w1, w2, ..., wdc) which
we can use for multimodal contrastive alignment. ps is formulated by averaging
the semantic feature vectors of class c:

ps =
1

dc

dc∑
k=1

gθ(wk) (4)

We identify that the visual prototype has the knowledge of the understanding
of the given visual dataset, while the semantic prototype is able to contextualize
the features since the transformer model [21] is able to capture long-range de-
pendencies effectively. Hence, incorporating both the knowledges will yield more
generic and fast adoptive understanding of the given visual category. To align
both the prototypes, we use simple NT-Xent loss used introduced by Chen et
al. [5]. The auxiliary loss function at this stage to enhace the few-shot image
classification is defined as:

Lvs(i, pc, ps) = − log
exp(⟨pci , psi⟩/τ)

N∑
k=1
k ̸=i

exp(⟨pci , pck ⟩/τ) +
N∑

k=1

exp(⟨pci , psk ⟩/τ)

(5)

The total learning objective is defined as the weighted combination of both
the visual learning objective and the multimodal learning objective:

L = Lclass + λLvs (6)

Here, λ is a weighting factor and is a tunable hyperparameter determined
using grid-search.
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Method Backbone Accuracy

MatchingNet [22] Conv-4 60.52±0.88
MAML [9] Conv-4 54.73±0.97

ProtoNet [18] Conv-4 50.46±0.88
RFS [20] Conv-4 41.47±0.72

L3 [3] Conv-4 53.96±1.06
LSL [12] Conv-4 61.24±0.96

Chen et al. [6] Conv-4 60.53±0.83
Meta-Baseline [7] Conv-4 59.30±0.86

RS-FSL [2] Conv-4 65.66±0.90

VS-Alignment Conv-4 66.73±0.78
Table 1. Performance comparison on the CUB dataset. We report average 5-way 1-
shot accuracy (%) with 95% confidence interval. Table is an extended version adapted
from RS-FSL [2].

3 Experiments

Datasets. We conduct experiments on two benchmark datasets for few-shot im-
age classification: mini-ImageNet [22] and CUB [23]. The miniImageNet dataset
consists of 100 image classes extracted from the original ImageNet dataset [8].
Each class contains 600 images of size 84× 84. We follow the splitting protocol
proposed by [18], and use 64 classes for training, 16 for validation, and 20 for
testing. We obtained the categorical descriptions provided by [2].

The CUB dataset contains 200 classes and 11 788 images in total. We split
the dataset into 100 classes for training, 50 for validation, and 50 for testing
following the prior standard works [19, 2]. The categorical description for CUB
is obtained from [16]. We randomly sample the required number of descriptions.
Implementation Details. To be in fair comparison with the existing works,
we deploy the 4-layer convolutional architecture proposed in [18] for CUB and
ResNet-12 [11] for miniImageNet. For semantic feature extractor we use pre-
trained textual encoder trained using CLIP [14] model in all of our experiments.
The model comprises of 12-layer transformer model [21] with 8 attention heads
and 512-width. Following [15], during classification stage, we use SGD optimizer
with an initial learning rate of 0.05, momentum of 0.9, and weight decay of
0.0005. We train the model for 100 epochs with a batch size of 64 and the
learning rate decays twice by a factor of 0.1 at 60 and 80 epochs. During the
vs-alignment (meta-learning stage), we use a contant learning rate of 0.001 with
Adam optimizer and train the model for 600 epochs. We define λ = 2.5 based on
the grid-search we performed. All the experiments were performed using nvidia
Quadro RTX 6000 single-GPU and we report the results form 5-way 1-shot
setting.

3.1 Comparison with the baselines

We report the results of our approach along with the comparison of the state-
of-the art results in CUB dataset in Tab. 1. It is clear that the proposed visual-
semantic alignment method outperforms the baseline approach and some of the
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existing state of the art approaches. This shows the importance of incorporating
the semantic knowledge of the few-shot category in a contrastive style. The
results on miniImagenet dataset is reported in Tab. 2. It is to be noted that
even though there is an improvement in performance over the baseline [7] in
the proposed approach, the gap is not significant. We hypothesize that it could
have happened because of the lack of categorical descriptions compared to that
of CUB dataset. In both of the experiments, we compare our approach with
RS-FSL [2] which is a recent FSL approach that utilizes categorical descriptions
as well.

Method Backbone Accuracy

ProtoNet [18] Conv-4 55.50±0.70
Matching Net [22] Conv-4 43.56±0.78

MAML[9] Conv-4 48.70±1.84
Chen et al. [6] Conv-4 48.24±0.75
Boosting [10] WRN-28-10 63.77±0.45

RFS-Simple [20] ResNet-12 62.02±0.63
RFS-Distill [20] ResNet-12 64.82±0.60

Meta-Baseline [7] ResNet-12 63.17±0.23
RS-FSL [2] ResNet-12 65.33±0.83

VS-Alignment ResNet-12 65.89±0.80
Table 2. Comparison with prior works on the miniImageNet.

Tab. 3 reports the results of FSL across multiple standard baselines. It is de-
scriptive that the addition of visual-semantic alignment boosts the performance
in both ProtoNet [18] and Meta-baseline [7] while it depreciates the performance
in RFS and SKD [20, 15]. Since RFS and SKD are of non-episodic FSL meth-
ods, we come to a conclusion that we can plug in pur method and boost the
performance only episodic few-shot learning paradigm.

Baseline Backbone
Without
VS-Alignment

With
VS-Alignment

ProtoNet [18] Conv-4 57.97±0.96 61.43±0.83
RFS [20] Conv-4 44.93±0.76 42.36±0.64
SKD [15] Conv-4 58.75±0.96 56.43±0.43

Meta-Baseline [7] Conv-4 59.30±0.86 66.73±0.78

Table 3. Performance of different baselines both with and without the proposed visual-
semantic contrastive alignment on the CUB dataset.

4 Conclusion

In this work, we introduce a simple contrastive alignment between visual and
semantic prototypes of visual categories which acts as an auxiliary task to fa-
ciliate few-shot image classification. Our approach is generic in nature and can
be plugged into any meta-learning based few-shot baselines. We also prove that
our approach outperforms multiple standard baselines in the 5-way 1-shot few-
shot setting hence establishing a new research direction to solve few-shot image
classification task.
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