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Abstract. The recent advances in generative models have resulted in
massive progress in the quality of the generated images to the point
that in many cases they cannot be easily distinguished from real im-
ages. Despite this quality improvement, using AI generated images for
the purpose of training robust down-steam computer vision models for
real-world applications has proven to be very challenging. The AI gen-
erated images usually lack the required diversity and scene complexity
that is crucial for many real-world applications, specifically the ones with
safety concerns. The di�culty of this challenge grows significantly when
the underlying application involves detection of some specific objects
that appear with critically low frequency in the available real datasets.
This paper studies a new approach for generating diverse, complex and
domain-compatible synthetic images for detecting infrequent objects by
employing a di↵usion-based generative model pretrained on a generic
dataset. More specifically, the impact of using the generated synthetic
images with the proposed approach in solving the real world problem
of detecting emergency vehicles in road scenes is investigated. Further-
more, the challenges of generating synthetic datasets with the proposed
approach will be thoroughly discussed.

1 Introduction

Detection of some domain specific and infrequent objects can be a crucial part
of many computer vision based systems. An example of such scenarios is the de-
tection of emergency vehicles for an autonomous driving car application. Since
the number of images containing the specific objects of interest in the available
datasets is critically limited, generating supplementary synthetic images is a vi-
able solution for training robust downstream object detection models. Employ-
ing deep generative models to generate synthetic images for training downstream
models in a real-world application imposes some key challenges listed as follows:

Insu�cient training samples for the generative model A deep gener-
ative model relies on a large training dataset covering di↵erent varieties of the
object of interest to be able to generate realistic images. In the case of infrequent
objects, the lack of su�cient training images is the reason synthetic images are
required in the first place.
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Fig. 1. Block diagram of the architecture of the proposed approaches.

Insu�cient diversity and scene complexity The majority of of recent
advancements in improving the performance of generative models have been fo-
cused on enhancing the quality of the generated images and making them more
photo-realistic. The AI-generated images usually lack the required scene com-
plexity and diversity which is essential for training robust downstream models
[1].For the same reason there is normally a distribution shift between the gener-
ated images and the real ones in terms of complexity and diversity [9].

Generated images may require labeling As opposed to synthetic images
generated by rendering engines, AI-generated images may require an annotation
process to be ready for a real application.

In order to tackle the above challenges and generate synthetic images that
can be e↵ectively used in real-world applications, in this paper we investigate
three di↵erent approaches of using a generative model that has been only trained
on a generic dataset. The proposed approaches can be used to generate a large,
complex and widely diverse dataset from a small relevant real dataset. We use
a di↵usion-based model [8][10][4] that can be conditioned on di↵erent informa-
tion and be partially masked during the generative process to make carefully
controlled changes in the real images in a systematic way. This allows the gener-
ation of a su�ciently large domain-compatible dataset that covers the required
variety and complexity for training a robust downstream model. Since the pro-
posed approach uses real images as the basis to create the synthetic images,
there is no domain-shift between the generated images and the real dataset.
Conditioning the generative process on a set of guiding text prompts as well as
partially masking specific parts of the image during the process allows impos-
ing a customized level of diversity while maintaining the domain characteristics
and scene complexity of the real images. The proposed approach also allows
either preserving the available annotations or automatically generating new an-
notations for the synthetically generated objects. We run several experiments
to extensively assess the performance enhancement that the generated images
provide to the final downstream object detection models.
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Fig. 2. A few examples of input and output endpoints for Approach 1 .

2 Related Work

One of the most commonly used approaches to generate synthetic image data is
through the use of photo-realistic 3D physics engines[13] [3]. These engines can be
used to render images from 3D computer-aided design (CAD) models of the tar-
get objects. The photo-realism achieved through these image rendering engines
has reached a point where synthetic images can be hardly distinguished from real
ones [7]. However, there are some drawbacks to these synthetic data generation
approaches that make them unsuitable for many practical applications. These
include, but are not limited to, requiring 3D asset development, challenges in
tuning design parameters (e.g. brightness) and lack of the required diversity and
complexity in the image background. Deep generative models including genera-
tive adversarial networks (GANs) have been vastly studied for synthetic image
generation and synthetic augmentation [15][5]. In the field of medical imaging,
GAN-based data augmentation has particularly been used to improve sensitiv-
ity and specificity of models tried on small medical imaging datasets by 5-7%
[2][5]. Class imbalance has been addressed by generating additional examples of
infrequent samples through adversarial autoencorders, a GAN variant [11].More
over, deep learning based style transfer has shown 2% improvements in classi-
fication accuracy over traditional augmentation strategies [16]. Style transfer,
in particular, is capable of preserving image content while copying the style of
a separate, unrelated image [6]. Denoising di↵usion models were initially intro-
duced by [14]. Recent work has demonstrated the ability of di↵usion models to
compete and potentially outperform traditional generative adversarial networks
in realistic image generation and producing synthetic results indistinguishable
from real images to human evaluators in some cases [4][17].

3 Methodology

In the proposed methodology for syntehtic image generation, first a pretrained
di↵usion model (Dhariwal and Nichol 2021) (Nichol et al. 2021) is fine-tuned on
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Fig. 3. An examples of the steps of Approach 2 .

a generic dataset which does not necessarily include the infrequent target ob-
jects (we used a generic driving dataset (Yu et al. 2020)). In order to condition
the di↵usion process on text, we use a CLIP model (Radford et al. 2021) that
perturbs the denoising process mean with the gradient of the dot product of
the image and text encoding with respect to the image. Next, we explore three
di↵erent image manipulation approaches with this model that allows generating
synthetic images that contain a large variety of infrequent objects of interest.
These synthetic images are then used for training downstream object detection
models as shown in Figure 1. Finally, a text-conditioned super-resolution di↵u-
sion model is cascaded with the generative model in the pipeline to increase the
resolution of the generated images. The proposed approaches are based on the
assumption that a very small but domain-relevant real dataset is available and
synthetic images are generated by manipulating those real images. In fact, using
this small real data as the basis is essential in keeping the generated images
in the target domain. In this section, the three proposed image manipulation
approaches will be explained in detail.

3.1 Approach 1: Synthetic Infrequent Objects in a Real Background

The idea behind this approach which is depicted in the upper part of Figure 1,
is to generate instances of the infrequent objects of interest inside a background
sampled from the real dataset to maintain the generated images in the same
domain as the real dataset. The importance of this approach is that it can
be employed to generate a su�ciently large synthetic dataset even if the real
dataset does not include any images containing the infrequent target objects. The
architecture of this approach consists of four main components: A mask generator
block, a text prompt composer unit, a text guided di↵usion generative model
and a super-resolution model. The input image serving as background and the
corresponding annotations are first fed to a mask generator block which proposes
a mask based on the current bounding boxes in the image. The generated mask
is then applied to the original image and the resulted masked image is fed to the
text conditioned di↵usion model. The di↵usion model iteratively manipulates
the masked part of the image following the input text prompt guidance until
it generates an instance of the target object inside the masked section which is
well blended with the background. The output of this model is then fed to a
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Fig. 4. Changing the weather condition in the real image using Approach 3 .

di↵usion-based super-resolution model (Nichol and Dhariwal 2021) to enhance
its resolution. The super-resolution model can also be conditioned on the text
prompt for improved enhancement. Figure 2 illustrates a few examples of the
inputs and output endpoints of the pipeline of this approach. In the rest of this
subsection, the mask generator and prompt composer blocks are described.

Mask generator block This block proposes a region for masking the input
image based on the available bounding boxes in the annotations. In order to
find a proper area for the placement of the target object, one or more adjacent
bounding boxes are randomly picked and merged together to make a target
bounding box while the following rules are met:

– The proposed bounding box should not cut any of the other bounding boxes
to avoid unrealistic coincidences between the generated objects and the ones
in the background.

– If needed, the orientation of the bounding box should be compatible with the
required object alignment. Usually the orientation of the bounding box dic-
tates the orientation of the generated object and can be used as an additional
factor for randomization.

Other customized rules can be integrated depending on the target application.

Text prompt composer unit This block composes a text prompt to guide
the di↵usion process toward generating the desired target image. Each composed
prompt consists of five main components as follows:

Subject In approach 1, subject is randomly sampled from the list of infre-
quent target objects.

Verb Verb is randomly sampled from a list of possible actions relevant to
the target object. For example for a driving scene dataset, the possible verbs can
be driving, crossing, parking, etc.

Location Represents the location of the target object in the image and it
can be either extracted from meta data (approach 1) or randomly sampled from
possible options (approach 2).

Condition This field describes a global condition for the image. For example
for a road scene dataset this field can describe the weather condition, e.g. rainy,
snowy, foggy, etc.

Time Optionally describes the time of day, e.g. morning, night, sunset, etc.
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Fig. 5. Examples of demonstrating challenges with text condition image generation.

3.2 Approach 2: Real Infrequent Objects in Synthetic Background

This approach can be also represented by the top part of 1. However instead
of generating target objects in a real background, it generates a synthetic back-
ground for a real target object. The target object is first cropped from a real
image and after random resizing is placed in a random position in a blank (all
zeros) background. The resulted combinations is then fed to the di↵usion model.
There are two important di↵erences between this approach and approach 1:

1. As opposed to approach 1, in this approach the mask only covers the real
object and leaves everywhere else in the image available for the di↵usion
model’s generative manipulation. This results in the generation of a back-
ground that follows the text prompt guidance and blends well with the real
object.

2. In this approach, the prompt composer unit randomly samples all of the
background-related fields such as verb, location, condition and time from
the the corresponding lists that are provided to the module based on the
target application. The only field that will be extracted from the annotation
is the type of target object that has been cropped from the real image.

Figure 3 illustrates the steps of this approach in an example.

3.3 Approach 3: Real Images Globally Altered

The third approach is represented by the bottom part of the block diagram
in Figure 1. In this approach, certain aspects of the real images are altered
as they are converted from low to high resolution by conditioning the super-
resolution model to text prompts that guide the di↵usion process toward those
modifications. As suggested by the diagram, in this approach no masking is
required as the entire input image is subject to the model’s subtle modifications.
In order to propose suitable text prompts for randomized modifications to input
images, the text composer unit randomly samples the condition field from a
list of application-relevant conditions while rest of the fields are extracted form
the annotations or meta-data if it is available. For example, multiple altered



DOCOSyn 7

versions of an input real image can be generated synthetically by randomizing
on weather condition or the time of the day. Figure 4 shows some examples of
these modifications along with their corresponding text prompts.

4 Dataset

In this section, we introduce the real dataset that was used as a base for gener-
ating the synthetic images in all of our experiments. The LISA-Amazon Vehicle
and Scene Attributes (LAVA) dataset [12] has been collected as a part of a
collaboration between the Amazon Machine Learning Solutions Lab with the
Laboratory of Intelligent and Safe Automobiles at the University of California,
San Diego (UCSD) to build a large and richly annotated driving dataset with
fine-grained vehicle, pedestrian, and scene attributes. The LAVA dataset is an-
notated for all types of vehicles, tra�c signs, tra�c lights and pedestrians with
2D bounding boxes, class labels and some meta data. A subset of the LAVA
dataset that covers all the images with emergency vehicles in them (in addition
to other vehicles) was separated and used for generating synthetic images and
training the downstream object detection models. We refer to this subset as
LAVA-emergency dataset. Table 1 shows the class distribution of the train and
test splits of the LAVA-emergency dataset. It is essential to reserve a reasonable
portion of the real dataset for testing to be able to reliably evaluate the impact
of synthetic data generation approaches.

Table 1. Distribution of images and bounding boxes for real and synthetic datasets.

Dataset Num. images Medical Fire Police

Real-Train 215 47 42 126
Real-Test 539 270 68 215
Type-1 1876 447 569 939
Type-2 1875 620 306 949

5 Experiments

5.1 Experimental Setup

For all of the experiments in this section, the LAVA-emergency dataset is used
as a base for generating synthetic images using the approaches in section 3. The
downstream task in our experiments is the detection of emergency vehicles in-
cluding medical vehicles (ambulances), fire engines and police cars. These emer-
gency vehicles appear with a critically low frequency in the road-scene datasets.
For better understanding of the evaluation results, we group the synthetic data
generation techniques into three general types. Type-1 (S1), represents the ap-
proaches wherein the emergency vehicles themselves are synthetically generated
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Table 2. Downstream object detection performance for each dataset.

Model and backbone Dataset Num. train images mAP@0.50:0.95 mAR@0.50:0.95

SSD ResNet101 V1 FPN R 215 0 0.028
SSD ResNet101 V1 FPN R, S1 2091 0.147 0.441
SSD ResNet101 V1 FPN R, S2 2090 0.396 0.59
SSD ResNet101 V1 FPN R, S1, S2 3966 0.372 0.586
SSD MobileNet V1 FPN R 215 0 0.095
SSD MobileNet V1 FPN R, S1 2091 0.129 0.331
SSD MobileNet V1 FPN R, S2 2090 0.475 0.637
SSD MobileNet V1 FPN R, S1, S2 3966 0.357 0.583

E�cientDet D1 R 215 0.053 0.439
E�cientDet D1 R, S1 2091 0.136 0.523
E�cientDet D1 R, S2 2090 0.368 0.594
E�cientDet D1 R, S1, S2 3966 0.458 0.641

Faster RCNN Inception ResNet V2 R 215 0.173 0.451
Faster RCNN Inception ResNet V2 R, S1 2091 0.454 0.723
Faster RCNN Inception ResNet V2 R, S2 2090 0.521 0.695
Faster RCNN Inception ResNet V2 R, S1, S2 3966 0.494 0.714

(only Approach 1). Type-2 (S2) represents all the approaches wherein the emer-
gency vehicles are real but they have been placed in a synthetically generated
or modified background (approach 2 and approach 3). Table 1 shows the distri-
bution of generated data over di↵erent emergency vehicles categories. In these
experiments, for composing the text prompts, the weather condition is randomly
and uniformly sampled from a list of 5 weather conditions namely, sunny, rainy,
snowy , foggy and cloudy. The location of the vehicle is randomly sampled from
one of four options: street, road (each with a probability of 0.35), parking (with a
probability of 0.25) and bridge (with a probability of 0.05). Each synthetic image
is generated by applying 100 di↵usion steps to the masked real input image (in
Approach 1 and 2). The resolution of the generated images is then enhanced by
applying 30 addition di↵usion steps through the super-resolution model. Each
experiment uses either only real data (R) or a combination of it with one or more
types of synthetic images. The objective of these experiments is to evaluate how
each of the synthetic data generation approaches improves the performance of
the downstream object detection models when combined with the real data.

5.2 Results

Table 2 shows the performance of various object detection algorithms trained
on di↵erence combinations of real and synthetic images on the emergency-LAVA
test set. As shown in this table the single-stage detectors such as di↵erent flavors
of SSD and E�cientDet are barely able to learn anything from the small real
training set. However, incrementally adding synthetic images to augment the real
training images remarkably improves the detector’s performance on the real test
set. The E�cientDet D1 model has monotonically increasing mAP and mAR as
more synthetic data is added. For SSD ResNet101, SSD MobileNet and Faster
R-CNN models there is a considerable performance improvement when trained
on R, S1 or R, S2 compared to when they are only trained on R. However, for
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these models, there is a slight drop in performance when they are trained on R,
S1, S2 compared to when they are trained on R, S2. As mentioned in section
3.1, in synthetic Type-1 images the emergency vehicles themselves are generated
by the model and the generator model has been trained on a generic dataset
which contains vehicles from a variety of di↵erent countries in the world. The
LAVA-emergency test set however contains only emergency vehicles from South-
ern California, and thus the discrepancy in performance when involving S1 in
training along with S2 can be explained by the change in emergency vehicles
characteristics from di↵erent geo-locations. However, in S2 images, the emer-
gency vehicles have been directly adopted from emergency-LAVA training set
and they are compatible with the emergency vehicles in the test set. Therefore,
increasing the number of Type-2 images always improves the performance of all
of the object detection models.

5.3 Practical Challenges

Although the synthetically generated images by the proposed approaches are
realistic and diverse, there are a few challenges that need to be considered de-
pending on the target application as follows:

Relative size of the objects When an image generation process is con-
ditioned on text, sometimes the relative sizes of the generated objects can be
slightly out of proportionate with respect to the background objects, regardless
of the type of the generative model. While some downstream vision tasks such
as object detection are not negatively impacted by this, some others may be
impacted. The top row of Figure 1 shows a few examples with slightly dispro-
portionate objects.

The number of the objects One of the concepts that normally do not
transfer properly between language and vision spaces is the exact quantity of
objects. Similar to the previous case, the exact number of objects does not
impact many of the vision tasks (e.g. object detection).

The relative position of the objects Similar to relative sizes of objects,
their relative positions with respect to each other can sometimes be unrealistic
when the generative process is conditioned on text. The bottom row of Figure 5
shows a few examples impacted by this e↵ect.

6 Conclusions

In this work, a new approach for generating synthetic data for training down-
stream models in a critically low data regime was studied. The experimental
results showed that employing the synthetic images generated by the proposed
approach significantly improved the performance of all of the investigated ob-
ject detection models. Employing approaches similar to the proposed approach
to augment insu�ciently small real datasets used in training the downstream
computer vision models is specifically crucial for applications with safety con-
cerns.
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7. Hamesse, C., Lahouli, R., Fréville, T., Pairet, B., Haelterman, R.: Training machine
learning algorithms for computer vision tasks in di�cult conditions: 3d engines to
the rescue (2019)

8. Ho, J., Jain, A., Abbeel, P.: Denoising di↵usion probabilistic models. Advances in
Neural Information Processing Systems 33, 6840–6851 (2020)

9. Joshi, C.: Generative adversarial networks (gans) for synthetic dataset generation
with binary classes (2019)

10. Kim, G., Ye, J.C.: Di↵usionclip: Text-guided image manipulation using di↵usion
models (2021)

11. Lim, S.K., Loo, Y., Tran, N., Cheung, N., Roig, G., Elovici, Y.: DOPING: gen-
erative data augmentation for unsupervised anomaly detection with GAN. CoRR
abs/1808.07632 (2018), http://arxiv.org/abs/1808.07632

12. Ninad, K., Akshay, R., Jonathan, B., Jeremy, F., Mohan, T., Nachiket, D., Greer,
R., Saman, S., Suchitra, S.: Create a large-scale video driving dataset with detailed
attributes using amazon sagemaker ground truth (2021)

13. Pollok, T., Junglas, L., Ruf, B., Schumann, A.: Unrealgt: using unreal engine to
generate ground truth datasets. In: International Symposium on Visual Comput-
ing. pp. 670–682. Springer (2019)

14. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsuper-
vised learning using nonequilibrium thermodynamics. In: International Conference
on Machine Learning. pp. 2256–2265. PMLR (2015)

15. Vega-Márquez, B., Rubio-Escudero, C., Riquelme, J.C., Nepomuceno-Chamorro,
I.: Creation of synthetic data with conditional generative adversarial networks. In:
International Workshop on Soft Computing Models in Industrial and Environmen-
tal Applications. pp. 231–240. Springer (2019)

16. Zheng, X., Chalasani, T., Ghosal, K., Lutz, S., Smolic, A.: Stada:
Style transfer as data augmentation. CoRR abs/1909.01056 (2019),
http://arxiv.org/abs/1909.01056

17. Zhou, S., Gordon, M.L., Krishna, R., Narcomey, A., Morina, D., Bernstein,
M.S.: HYPE: human eye perceptual evaluation of generative models. CoRR
abs/1904.01121 (2019), http://arxiv.org/abs/1904.01121


