AUGCO: Augmentation Consistency-guided Self-training for Source-free Domain Adaptive Semantic Segmentation

Viraj Prabhu*, Shivam Khare*, Deeksha Kartik, and Judy Hoffman

Georgia Institute of Technology

Abstract. We focus on source-free domain adaptation for semantic segmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Augmentation Consistency-guided Self-training (AUGCO), an adaptation algorithm that uses the model’s pixel-level predictive consistency across diverse, automatically generated views of each target image along with model confidence to identify reliable pixel predictions, and selectively self-trains on those, leading to state-of-the-art performance within a simple to implement and fast to converge approach.

1 Introduction

Consider a deep model trained to perform semantic segmentation deployed atop an autonomous vehicle. While unsupervised domain adaptation (DA) has been extensively studied [16,4,11,7,20], most prior DA methods assume continued access to labeled source data during adaptation. However, this may be impractical due to the limitations of on-board compute and memory, particularly so for a compute-heavy task such as segmentation.

We consider the problem of adapting such a trained semantic segmentation model to a new target domain given only its trained parameters and unlabeled target data. The absence of source data for regularization makes this setting very challenging and highly susceptible to divergence from original task training. We build upon recent work in parameter constrained self-training called TENT [21], which constrains optimization to only update the model’s batch-norm parameters (both affine and normalization), and self-trains on unlabeled target data by minimizing a conditional entropy [5] loss. While TENT leads to modest performance improvements on standard domain shifts, it performs self-training on all model predictions. Under a domain shift, many of the model’s predictions may initially be incorrect, and entropy minimization encourages the model to increase its confidence even on such incorrect predictions! As a result, unconstrained self-training leads to error accumulation [1,8,13], particularly on categories on which the source model does poorly to begin with.

To address this, prior work has proposed selective self-training on instances deemed reliable via model confidence [19] or consistency under random image augmentations [13]. However, model confidence from deep networks is known to be miscalibrated under a domain shift [18], and the suitability of augmentation consistency for semantic segmentation has not been previously studied.
propose AUGCO, a selective self-training algorithm that makes use of a novel selection strategy based on combines pixel-level predictive consistency across diverse, automatically generated target image views with per-class confidence.

2 AUGCO: Augmentation Consistency-guided Self-Training

Setup and Notation. In semantic segmentation we are given an input image, $x \in \mathbb{R}^{H \times W \times 3}$, and the goal is to label every pixel, x_{ij}, with one of C semantic labels, $y_{ij} \in \{1, 2, \ldots, C\}$, producing an output label image, $y \in \mathbb{R}^{H \times W}$. To do this, we will learn a function h (CNN in our case) which takes images as input and produces a probabilistic output over C classes for each output pixel: $h: x \rightarrow p \in \mathbb{R}^{H \times W \times C}$. We produce a pseudolabel by taking the argmax of the output probabilities: $\hat{y} = \text{argmax} p$. In source-free domain adaptation, we assume access to a model trained on labeled source (S) data, h_S, as well as N unlabeled instances $x_T \sim \mathcal{P}_T(X)$ from a target domain T.

Overview. Our method first uses a random crop, resize, and jitter strategy to generate two aligned predictive views of each target image that capture model predictions across varying object scale, spatial context, and color statistics (Sec. 2.1). Next, AUGCO identifies reliable model predictions on which to self-train using self-supervised signals in the form of pixel-level predictive consistency across the two aligned views, as well as model confidence. Finally, the model is self-trained using pseudolabels for reliable predictions. See Fig. 1.

2.1 Aligned predictive view generation

A key facet of our approach will be to identify pixels for which model predictions are deemed reliable. To do this we ensemble model predictions over random image regions that differ in scale and spatial context. We begin by randomly selecting a bounding box with coordinates, (r_1, c_1, r_2, c_2), for each target image that satisfies two constraints: i) it spans an area that is 25-50% of the area of the original image and ii) it matches the aspect ratio of the original image (i.e. $(r_2 - r_1)/(c_2 - c_1) = H/W$).
View 1 (resized crop of prediction): To create the first output prediction, we pass the original image, x_T, through the current model, h, to produce an output probabilistic prediction, $p = h(x_T)$. This original output prediction will be cropped using the random bounding box coordinates and resized to the original output image size: $V = \text{resize}(\text{argmax}_r p[r_1 : r_2, c_1 : c_2], H, W)$.

View 2 (prediction on resized image crop): For our second output prediction, we first modify image appearance by applying a pixel-level color jitter $x_T' = \text{jitter}(x_T)$. We then use the same bounding box coordinates to extract a cropped image region and resize that region to the original image size to produce a rescaled image view $\tilde{x}_T = \text{resize}(x_T'[r_1 : r_2, c_1 : c_2], H, W)$. This jittered, cropped, and resized image is then passed through the model to produce a probabilistic output, $\tilde{p} = h(\tilde{x}_T)$ and associated predicted view, $\tilde{V} = \text{argmax}_{\tilde{p}}$.

We thus obtain aligned predictive views V and \tilde{V}, which capture model predictions made at varying object scale (e.g. in Fig. 1, the size of the car in the secondary view is larger than in the original), spatial context (e.g. additional cars are absent in the secondary view), and color statistics.

2.2 Selective Self-Training

Measuring Reliability

Pixel-level predictive consistency. First, we measure pixel-level consistency between the model’s aligned predictions V and \tilde{V}, and mark pixels with identical predictions ($V_{ij} = \tilde{V}_{ij}$) across the two views as “consistent” and those with different predicted labels as “inconsistent”.

Class-conditioned confidence thresholding. In addition to predictive consistency, we also aim to capture a notion of the intrinsic model confidence. We compute a per-category empirical range to choose an adaptive per-category confidence threshold. Given a batch, we gather all output probabilities and select a confidence threshold per category, $t_c \in \mathbb{R}$, corresponding to the top K-th percentile ($K=50$ in our experiments) of observed confidence values for category c. We consider an output prediction to be high confidence if its top score is greater than the corresponding category threshold: $\max p_{ij} > t_{\text{argmax}_c p_{ij}}$.

Overall, for a pixel, x_{ij}, with per-view probabilistic and categorical predictions, p, V and \tilde{p}, \tilde{V}, we define a binary reliability value, r_{ij}, in the following way:

$$r_{ij} = \begin{cases} 1 & \text{if } V_{ij} = \tilde{V}_{ij} \text{ or } \max \tilde{p}_{ij} > t_{\tilde{V}_{ij}} \\ 0 & \text{otherwise} \end{cases}$$ (1)

Selective self-training. Having obtained pseudolabels and reliability assignments, we update model parameters via self-training. To prevent task divergence in the source-free setting, we update only the model’s batch-norm parameters (affine and normalization), as proposed in Wang et al. [21].

We then minimize a cross-entropy loss L_{CE} over reliable predictions. The self-training objective we minimize is:

$$L_{SST}(x_{ij}) = r_{ij} L_{CE}(\tilde{p}_{ij}, \tilde{V}_{ij})$$ (2)
Finally, to encourage the model to make diverse predictions over the target domain, we add a target “information entropy” loss L_{IE} proposed in Li et al. [9]: we update the model to maximize entropy over the running average of its predictions q. L_{IE} is given by:

$$L_{IE}(x_{ij}) = \sum_{c=1}^{C} \tilde{p}_{ijc} \log q_c$$

For L_{IE} loss weight α, the complete AUGCO loss objective that is backpropagated is given by:

$$L_{AUGCO} = \mathbb{E}_{x \sim P_T} \left[\frac{1}{HW} \sum_{i=1,j=1}^{H,W} L_{SST}(x_{ij}) + \alpha L_{IE}(x_{ij}) \right]$$ \hfill (3)

3 Experiments

Setup. We evaluate AUGCO on 3 shifts: GTA5 [14] \rightarrow Cityscapes [3] (G\rightarrowC) SYNTHIA [15] \rightarrow Cityscapes (S\rightarrowC), and Cityscapes \rightarrow Dark Zurich Night (C\rightarrowDZN [17]). We report mean Intersection-over-Union (mIoU) across classes on the target test set. Across settings, we evaluate our method (AUGCO) after a single pass over the unlabeled target data (i.e., one epoch).

Results. Table 1 presents results. Across shifts, AUGCO outperforms prior work, often by significant margins (e.g., 3.9 points and 13/19 categories over SFDA [10] on G\rightarrowC), despite being considerably simpler (SFDA uses 120 epochs of adversarial learning whereas AUGCO uses 1 epoch of selective self-training). AUGCO also significantly outperforms TENT [21] (+8.2 on G\rightarrowC).

Table 1: **Results:** We report mIoU over the target test set. On S\rightarrowC we follow prior work and report mIoU over 16 and 13 categories.

<table>
<thead>
<tr>
<th>Method</th>
<th>G\rightarrowC</th>
<th>S\rightarrowC</th>
<th>C\rightarrowDZN</th>
</tr>
</thead>
<tbody>
<tr>
<td>source</td>
<td>34.4/29.4</td>
<td>34.1/28.8</td>
<td>28.8</td>
</tr>
<tr>
<td>TENT [21]</td>
<td>38.9/35.5</td>
<td>37.7/35.0</td>
<td>26.6</td>
</tr>
<tr>
<td>Test-time BN [12]</td>
<td>37.7/35.0</td>
<td>37.7/35.0</td>
<td>28.0</td>
</tr>
<tr>
<td>SFDA [10]</td>
<td>43.2/39.2</td>
<td>43.2/39.2</td>
<td>-</td>
</tr>
<tr>
<td>AUGCO (ours)</td>
<td>47.1/39.5</td>
<td>45.9/32.4</td>
<td>32.4</td>
</tr>
</tbody>
</table>

![Fig. 2: Qualitative segmentation results of the source model, TENT [21], and AUGCO. White boxes highlight categories recovered by AUGCO, whereas red boxes show failure cases.](image-url)
References

