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Abstract. We focus on source-free domain adaptation for semantic seg-
mentation, wherein a source model must adapt itself to a new target
domain given only unlabeled target data. We propose Augmentation
Consistency-guided Self-training (AUGCO), an adaptation algorithm that
uses the model’s pixel-level predictive consistency across diverse, automat-
ically generated views of each target image along with model confidence
to identify reliable pixel predictions, and selectively self-trains on those,
leading to state-of-the-art performance within a simple to implement and
fast to converge approach.

1 Introduction

Consider a deep model trained to perform semantic segmentation deployed
atop an autonomous vehicle. While unsupervised domain adaptation (DA) has
been extensively studied [16,4,11,7,20], most prior DA methods assume continued
access to labeled source data during adaptation. However, this may be impractical
due to the limitations of on-board compute and memory, particularly so for a
compute-heavy task such as segmentation.

We consider the problem of adapting such a trained semantic segmentation
model to a new target domain given only its trained parameters and unlabeled
target data. The absence of source data for regularization makes this setting
very challenging and highly susceptible to divergence from original task train-
ing. We build upon recent work in parameter constrained self-training called
TENT [21], which constrains optimization to only update the model’s batch-norm
parameters (both affine and normalization), and self-trains on unlabeled target
data by minimizing a conditional entropy [5] loss. While TENT leads to modest
performance improvements on standard domain shifts, it performs self-training on
all model predictions. Under a domain shift, many of the model’s predictions may
initially be incorrect, and entropy minimization encourages the model to increase
its confidence even on such incorrect predictions! As a result, unconstrained
self-training leads to error accumulation [1,8,13], particularly on categories on
which the source model does poorly to begin with.

To address this, prior work has proposed selective self-training on instances
deemed reliable via model confidence [19] or consistency under random image
augmentations [13]. However, model confidence from deep networks is known to
be miscalibrated under a domain shift [18], and the suitability of augmentation
consistency for semantic segmentation has not been previously studied. We
⋆ equal contribution
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Fig. 1: Overview of Augmentation Consistency-guided Self-Training (AUGCO). Left:
First, the model makes predictions on two views of each target image that differ in
scale, spatial context and color statistics, that are generated via a random crop, resize,
and jitter strategy (Sec. 2.1). Right: Next, reliable pixel predictions for self-training
are identified based on pixel-level consistency across aligned predictions and class-
conditioned confidence thresholding, followed by selective self-training (Sec. 2.2).

propose AUGCO, a selective self-training algorithm that makes use of a novel
selection strategy based on combines pixel-level predictive consistency across
diverse, automatically generated target image views with per-class confidence.

2 AUGCO: Augmentation Consistency-guided Self-Training

Setup and Notation. In semantic segmentation we are given an input image,
x ∈ RH×W×3, and the goal is to label every pixel, xij , with one of C semantic
labels, yij ∈ {1, 2, . . . , C}, producing an output label image, y ∈ RH×W . To
do this, we will learn a function h (CNN in our case) which takes images as
input and produces a probabilistic output over C classes for each output pixel:
h : x → p ∈ RH×W×C . We produce a pseudolabel by taking the argmax of the
output probabilities: ŷ = argmaxp. In source-free domain adaptation, we assume
access to a model trained on labeled source (S) data, hS , as well as N unlabeled
instances xT ∼ PT (X ) from a target domain T .
Overview. Our method first uses a random crop, resize, and jitter strategy
to generate two aligned predictive views of each target image that capture
model predictions across varying object scale, spatial context, and color statistics
(Sec. 2.1). Next, AUGCO identifies reliable model predictions on which to self-train
using self-supervised signals in the form of pixel-level predictive consistency
across the two aligned views, as well as model confidence. Finally, the model is
self-trained using pseudolabels for reliable predictions. See Fig. 1.

2.1 Aligned predictive view generation

A key facet of our approach will be to identify pixels for which model predictions
are deemed reliable. To do this we ensemble model predictions over random
image regions that differ in scale and spatial context. We begin by randomly
selecting a bounding box with coordinates, (r1, c1, r2, c2), for each target image
that satisfies two constraints: i) it spans an area that is 25-50% of the area of
the original image and ii) it matches the aspect ratio of the original image (i.e.
(r2 − r1)/(c2 − c1) = H/W ).
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View 1 (resized crop of prediction): To create the first output prediction,
we pass the original image, xT , through the current model, h, to produce an
output probabilistic prediction, p = h(xT ). This original output prediction will
be cropped using the random bounding box coordinates and resized to the original
output image size: V = resize(argmaxp[r1 : r2, c1 : c2], H,W )
View 2 (prediction on resized image crop): For our second output prediction
we first modify image appearance by applying a pixel-level color jitter x′

T =
jitter(xT ). We then use the same bounding box coordinates to extract a cropped
image region and resize that region to the original image size to produce a rescaled
image view x̃T = resize(x′

T [r1 : r2, c1 : c2], H,W ). This jittered, cropped, and
resized image is then passed through the model to produce a probabilistic output,
p̃ = h(x̃T ) and associated predicted view, Ṽ = argmax p̃.

We thus obtain aligned predictive views V and Ṽ , which capture model
predictions made at varying object scale (e.g. in Fig. 1, the size of the car in the
secondary view is larger than in the original), spatial context (e.g. additional
cars are absent in the secondary view), and color statistics.

2.2 Selective Self-Training

Measuring Reliability Pixel-level predictive consistency. First, we mea-
sure pixel-level consistency between the model’s aligned predictions V and Ṽ ,
and mark pixels with identical predictions (Vij == Ṽij) across the two views as
“consistent” and those with different predicted labels as “inconsistent”.
Class-conditioned confidence thresholding. In addition to predictive con-

sistency, we also aim to capture a notion of the intrinsic model confidence. We
compute a per-category empirical range to choose an adaptive per-category con-
fidence threshold. Given a batch, we gather all output probabilities and select
a confidence threshold per category, tc ∈ R, corresponding to the top K-th
percentile (K=50 in our experiments) of observed confidence values for category c.
We consider an output prediction to be high confidence if its top score is greater
than the corresonding category threshold: maxpij > targmaxpij

.
Overall, for a pixel, xij , with per-view probabilistic and categorical predictions,

p, V and p̃, Ṽ , we define a binary reliability value, rij , in the following way:

rij =

1 if

consistent︷ ︸︸ ︷
Vij = Ṽij or

confident︷ ︸︸ ︷
max p̃ij > tṼij

0 otherwise
(1)

Selective self-training. Having obtained pseudolabels and reliability assign-
ments, we update model parameters via self-training. To prevent task divergence
in the source-free setting, we update only the model’s batch-norm parameters
(affine and normalization), as proposed in Wang et al. [21].

We then minimize a cross-entropy loss LCE over reliable predictions. The
self-training objective we minimize is:

LSST (xij) = rijLCE(p̃ij , Ṽij) (2)
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Method G→C S→C C→DZN

source 34.4 29.4/34.1 28.8
TENT [21] 38.9 35.5/41.6 26.6
Test-time BN [12] 37.7 35.0/40.8 28.0
SFDA [10] 43.2 39.2/45.9 -
AUGCO (ours) 47.1 39.5/45.9 32.4

Table 1: Results: We report mIoU over the target test set. On S→C we follow prior
work and report mIoU over 16 and 13 categories.

Finally, to encourage the model to make diverse predictions over the target
domain, we add a target “information entropy” loss LIE proposed in Li et
al. [9]: we update the model to maximize entropy over the running average of its
predictions q. LIE is given by: LIE(xij) =

∑C
c=1 p̃ijc log qc For LIE loss weight

α, the complete AUGCO loss objective that is backpropagated is given by:

LAUGCO = Ex∼PT

[
1

HW

∑H,W
i=1,j=1 LSST (xij) + αLIE(xij)

]
(3)

3 Experiments

Setup. We evaluate AUGCO on 3 shifts: GTA5[14]→Cityscapes [3] (G→C) SYN-
THIA [15]→Cityscapes (S→C) , and Cityscapes→Dark Zurich Night (C→DZN [17]).
We report mean Intersection-over-Union (mIoU) across classes on the target test
set. Across settings, we evaluate our method (AUGCO) after a single pass over the
unlabeled target data (i.e. one epoch)
Baselines. We use DeepLabV3 [2] with a ResNet50 [6] backbone and com-
pare against state-of-the art methods for test-time and source free adaptation:
TENT [21], Test-time BN [12], and SFDA [10].
Results. Table 1 presents results. Across shifts, AUGCO outperforms prior work,
often by significant margins (eg. 3.9 points and 13/19 categories over SFDA [10]
on G→C), despite being considerably simpler (SFDA uses 120 epochs of adver-
sarial learning whereas AUGCO uses 1 epoch of selective self-training). AUGCO also
significantly outperforms TENT [21] (+8.2 on G→C).

Target Image TENTSource OnlyGround Truth AUGCO (ours)

mIoU=25.6 mIoU=36.6 mIoU=46.3

mIoU=32.9

mIoU=32.9 mIoU=41.8

mIoU=48.3 mIoU=57.9

mIoU=52.7

Fig. 2: Qualitative segmentation results of the source model, TENT [21], and AUGCO. White
boxes highlight categories recovered by AUGCO, whereas red boxes show failure cases.
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