
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#1
ECCV

#1

How well does CLIP understand texture?
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Abstract. We investigate how well does CLIP understand texture in
natural images described by natural language. To this end we analyze
CLIP’s ability to: (1) perform zero-shot learning on various texture and
material classification datasets; (2) represent compositional properties of
texture such as red dots or yellow stripes on the Describable Texture in
Detail (DTD2) dataset; and (3) aid fine-grained categorization of birds
in photographs described by color and texture of their body parts.

1 Introduction

Models with a joint understanding of language and vision such as CLIP [17],
ALIGN [9], and UNITER [1] have found their use in a number of applications
ranging from guiding image generation and editing using language [18], to open
vocabulary object detection [7], image segmentation [15,23], and retrieval. These
models are trained on massive collections of image and text pairs, and their
remarkably good visual and language representations is reflected by their strong
performance on many standard image understanding tasks.

We focus on zero-shot learning capabilities of CLIP on the texture domains.
Our motivation is two-fold. First, texture can be used to describe the appearance
of a wide range of objects categories, especially in fine-grained domains. Second,
there is a rich vocabulary to describe textures corresponding to color, pattern,
structure, periodicity, stochasticity, and other properties. While prior work has
evaluated zero-shot learning capabilities of CLIP on some texture datasets such
as DTD [2], in this work we conduct a more detailed study in the context of tex-
ture understanding expanding in three directions. First, we incorporate a wider
variety of datasets including FMD [19], KTH-TIPS [5] and KTH-TIPS2 [16].
Second, we investigate CLIP’s ability to a handle compositional attributes of tex-
ture on DTD2 [22], which contains descriptions of textures in the DTD dataset.
Third, we analyze how well CLIP recognizes texture attributes on real world
images of birds described by the color and texture of body parts.

The study reveals that CLIP performs remarkably well on these tasks. Larger
image encoders (e.g., ViT-L/14 [4]) are consistently better for zero-shot classifi-
cation. Prompt tuning has a smaller impact on larger image encoders. CLIP also
handles compositions well, and outperforms custom models trained on specific
domains like DTD, especially in their ability to handle rare color and pattern
combinations. On the CUB dataset [21], the top 10 classification accuracy on
zero-shot learning improves from 24.9% to 56.6% when texture attributes are
added to the categories described by their scientific names. However, we also
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find that image encoders of CLIP have a significant foreground bias which can
be problematic when referring to background regions and non-central objects.

2 Background

Zero-shot learning with CLIP. Models such as CLIP, ALIGN, UNITER jointly
learn an image encoder Θ and a text encoder Φ such as Θ(x) ≈ Φ(y) for
image-text pairs (x,y). CLIP uses bidirectional encoder representations using
transformers (BERT [20]) for text, and convolutional networks (e.g., ResNet [8])
or transformer (ViT [4]) encoders are used for images. CLIP was trained on a
massive, curated dataset of 400 million image-text pairs, resulting in encoders
that have good generalization abilities across visual recognition tasks. To use
CLIP for zero-shot learning, the description of a category y, often referred to as
a prompt p(y), is encoded using the language model to obtain class prototypes
Φ(p(y)). The encoded images are then classified based on the similarity to the
class prototypes. The authors of CLIP showed that this strategy works remark-
ably well for a wide variety of datasets in computer vision. While the class label
can be directly used as the prompt, i.e., p(y) = y, better prototypes can be ob-
tained by using a structure phrase involving the category as a prompt, e.g., “a
photo of a cat” instead of “cat”. Prompts reflect the style of text accompanying
images on the web and can significantly impact performance. While a large lit-
erature exists the task of designing prompts [10,11,14], we explore a small space
of hand-designed prompts on zero-shot texture recognition.

Texture datasets and tasks. While many texture datasets exist in the literature,
we focus on those that reflect describable properties of textures to benchmark
CLIP’s ability for zero-shot learning. This includes the Flickr material dataset
(FMD) containing 10 material categories (e.g., wood, paper), Describable tex-
ture dataset (DTD) containing 47 describable attributes of texture (e.g., swirly,
banded, zigzagged), KTH-TIPS and KTH-TIPS2a containing materials 10 and
11 materials taken under different lighting conditions. We also use the DTD2

dataset where images of DTD are annotated with descriptions of each image.
DTD2, unlike DTD contains multiple attributes that describe texture patterns
in a compositional manner (e.g., red polka-dots or multicolored banded). We
also explore the use of these attributes to describe species of birds in CUB
Dataset [21]. The dataset contains color and texture attributes of various body
parts of the bird for each individual image. We collect these statistics at the
entire set of images within a category to construct texture and color based de-
scriptions of each category, which serve as a basis for zero-shot recognition. We
compare the performance of the model against simply using the category name.
CLIP has already seen many examples of each bird category associated with the
images (possibly the entire CUB dataset is part of its training set). To simulate
zero-shot learning on novel categories we compare against a baseline where we
use the scientific names of the birds instead of their common ones. CLIP per-
forms poorly in this setting, but by incorporating color and texture attributes
the results improve significantly.
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Table 1. Performance of CLIP on zero-shot texture recognition. Zero-shot
accuracy for various image encoders using “a photo of a [c] pattern” as the prompt.

Model DTD FMD KTH KTH2a Average

RN50 40.7 83.4 49.1 62.8 59.0
RN101 42.0 79.0 48.5 51.3 55.2
ViT-B/32 41.1 83.8 58.4 59.5 60.7
ViT-B/16 44.7 87.9 57.4 61.1 62.8
ViT-L/14 50.4 89.5 63.5 64.5 67.0
ViT-L/14@336 50.7 90.5 63.9 66.0 67.8

3 Experiments

3.1 Zero-shot texture classification

Datasets and evaluation metrics. We report the average per-image accuracy
on all four datasets. For DTD we evaluate on the first split (“test1.txt”) with
1180 images across 47 classes. For FMD we evaluated on the entire dataset (10
material classes with 100 images per class). For KTH-TIPS we evaluate on 810
images equally split across 10 classes with categories such as “brown bread”,
“sandpaper”, “cotton”, etc. While for KTH-TIPS2a we use 4608 images across
11 classes, with roughly the same number of images per class. The datasets are
publicly available and linked via the project’s github repository foo.

Results. Table 1 shows the zero-shot classification accuracy of CLIP on DTD,
FMD and KTH datasets. For this task we use the prompt “a photo of a [c] pat-
tern” for each category “c” in the dataset. We observe that transformer variants
(e.g., ViT-B/32 and ViT-L/14) are generally better than the ResNet (e.g., RN50
and RN101) counterparts. The ViT-L/14@336 transformer trained on larger im-
ages (336×336 vs. 224×224) performs the best. Table 2 shows how the accuracy
varies across prompts for two different image encoders. The best prompt varies
across datasets but on average “a photo of a [c] object” and “a photo of a [c]
pattern” performs best. Prompts have a larger impact on the performance of the
smaller ViT-B/32 model compared to ViT-L/14 model indicated by the larger
variance in performance across prompts. Table 3 shows some additional results
using the ViT-L/14@336 image encoder. The accuracy on FMD reaches 93.6%
using this encoder for the prompt “a photo of [c] object”, surprisingly outper-
forming current state-of-the-art (≈ 85%) based on bilinear representations and
their variants [3, 6, 12, 13]. This could indicate potential overlap between FMD
and the training set of CLIP. We are unable to verify this as the training dataset
of CLIP is not publicly available, nor described in detail in the original paper.

3.2 Performance on Describable Texture in Detail Dataset

We first compare CLIP with DTML on phrase and image retrieval on DTD2.
DTML is the metric-learning baseline presented in [22], which trains an off-the-
shelf BERT text encoder and a ResNet101 image encoder using a triplet-based
metric learning loss on the DTD2 dataset. A linear layer on top of BERT and

foo
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Table 2. Effect of prompt tuning. Zero-shot accuracy for different prompts and
image encoders. Prompt tuning has a larger impact on some datasets (e.g., KTH) and
encoders (e.g., ViT-B/32). The best prompt varies across the datasets and encoders.

ViT-B/32 ViT-L/14
Prompt DTD FMD KTH KTH2a DTD FMD KTH KTH2a

[c] 41.1 80.0 48.6 46.7 50.4 88.7 58.3 68.0
a photo of a [c] 43.1 79.9 50.4 49.9 52.3 89.0 61.0 69.4
a photo of a [c] background 43.1 79.9 50.4 49.9 50.4 89.3 59.3 69.8
a photo of a [c] object 42.3 83.2 56.3 59.7 53.0 92.3 59.6 70.0
a photo of a [c] pattern 41.1 83.8 58.4 59.5 50.4 89.5 63.5 64.5

std. dev. ±1.0 ±2.0 ±4.3 ±6.0 ±1.3 ±1.5 ±2.0 ±2.3

Table 3. Additional results using ViT-L/14@336 image encoder. Zero-shot
accuracy is shown on four texture datasets.

Prompt Model DTD FMD KTH KTH2a Average

a photo of a [c] object ViT-L/14@336 53.3 93.6 59.4 69.5 69.0
a photo of a [c] pattern ViT-L/14@336 50.7 90.5 63.9 66.0 67.8

CLIP: best

CLIP: worst

DTML: best

DTML: worst

CLIP better than DTML

DTML better than CLIP

Fig. 1. Best and worst performing attributes on DTD2 for CLIP and DTML.
Each cloud represents top and bottom 80 attributes based on average precision on the
retrieval task for CLIP (left) and DTML (right). On the right 80 attributes with the
highest difference in performance between the two models. Font sizes of attributes are
proportional to their frequency in DTD2.
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Table 4. Retrieval performance of DTML and CLIP on DTD2. Various per-
formance metrics on image and phrase retrieval are shown for CLIP and DTML.

Task Model MAP MRR P@5 P@20 R@5 R@20

Phrase retrieval
DTML 31.6 72.5 40.6 22.9 20.2 44.5
CLIP 12.2 40.0 17.6 11.4 8.4 21.5

Image retrieval
DTML 13.5 31.1 16.5 14.5 5.2 17.3
CLIP 12.7 32.1 16.9 13.2 6.1 17.3

Table 5. R-precision of image retrieval on DTD2. CLIP understands composi-
tional attributes despite not trained on this dataset. For example, on the “two-colors”
the performance is significantly better. It also exhibits a significant foreground bias as
indicated by the lower performance on the “background” task.

Model Foreground Background Color+Pattern Two-colors

DTML 46.5±20.6 52.0±6.3 41.7±22.8 27.4±15.1
CLIP 38.0±14.9 60.2±5.5 45.2±23.5 55.2±16.2

Chance 50.0 50.0 7.4 5.5

all the layers of ResNet101 are trained (or fine-tuned). For phrase retrieval we
rank the 655 frequent phrases in DTD2 according to their distances to the
query image, while for image retrieval we rank the images in the test set based
on distances to the query text. For CLIP we use the prompt “an image of [c]
texture” where “c” is the category. All results for CLIP are using the ViT-B/32
image encoder.

Table 4 shows the retrieval performance of CLIP and DTML onDTD2. CLIP
obtains similar performance on image retrieval but is worse on phrase retrieval
compared to DTML. Figure 1 shows the best and worst attributes for each model.
We calculate the image retrieval average precision (AP) for each phrase and plot
top and bottom 80 phrases. We also visualize phrases with the largest difference
of AP between the two models. The two models are both good at phrases that
describe common colors and patterns, but their worst performing phrases are
different. CLIP is better than DTML on rare colors such as “orange”, “pink”,
“purple”. CLIP is also better on attributes related to materials or certain types
of objects (e.g., “wood”, “marble”, “glass”) with are relatively rare. However,
CLIP performs worse used to describe patterns and textures frequent in DTD
(e.g., “rough”, “lined”, “grooved”).

Attributes as prompts. DTD2 contains multiple attributes for each image which
could be incorporated into the prompt design for each category. We include the
20 most frequent attributes for each category in the prompt as “an image of
[p1, p2,. . . , p20] texture”, where pi is the ith most-frequent phrase. For example,
the “gauzy” category is described as “an image of gauzy, sheer, transparent,
light, thin, white, translucent, soft, see through, delicate, netted, meshy, airy,
silky, fabric, see-through, folded, wavy, curtains, cloth texture.” This improves
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Table 6. Phrase and image retrieval on CUB. We experiment with 17 attributes
that are included in both CUB and DTD2.

Task Model MAP MRR P@5 P@20 R@5 R@20

Phrase retrieval
DTML 52.6 68.6 46.4 - 45.8 -
CLIP 54.1 75.9 43.2 - 43.4 -

Image retrieval
DTML 35.3 53.7 44.7 43.8 0.2 0.7
CLIP 50.1 91.7 72.9 71.8 0.5 1.6

the accuracy to 54.8% from 41.1% when only including the category as prompts
with the ViT-B/32 encoder on DTD.

Synthetic Textures. We conduct the compositionality modeling analysis on syn-
thetic texture images the same as described in Section 5.3 of [22]. Given a query
phrase such as “blue and red”, the task is rank the positive and hard negative im-
ages (which are “blue” or “red” but not both). The R-precision for the retrieval
task is listed in Table 5. CLIP achieves a significant improvement on “Two-
colors” and a slight improvement on “Color+Pattern” over the DTML model.
The larger training set of CLIP allows better generalization to rare or novel com-
binations inDTD2. We also see a slight improvement for CLIP on “Background”
compared against DTML but it performs lower than random guesses on “Fore-
ground”. This suggests that CLIP likely has a foreground bias. We investigate
this aspect further on CUB Dataset.

3.3 Performance on Caltech-UCSD Birds Dataset

Red-bellied Woodpecker
Species: Melanerpes carolinus
Head: red; gray; white; multi-color
Belly: white; buff; solid
Wing: white; black; spotted

Common Yellowthroat
Species: Geothlypis_trichas
Head: black; buff; white; striped
Belly: yellow; solid
Wing: brown; buff; solid

Field Sparrow
Species: Spizella pusilla
Head: orange; gray
Belly: white; gray; solid
Wing: orange; black; striped

“An image of a duck-like shape medium size black 
Rhinoceros Auklet with buff leg, orange bill, black 
nape, solid wing, black upper tail, black solid back, 
black crown, grey underparts, grey breast, solid tail, 
grey throat.”

“An image of a medium size black Parakeet Auklet 
with white eye, specialized red short bill, white 
belly, black nape, white underparts, black back, 
black crown, black forehead, grey leg, white breast, 
black upper tail.”

“An image of a medium size Crested Auklet with 
white eye, crested head, specialized orange bill, 
solid wing, black nape, black forehead, black upper 
tail, black throat, black solid back, black crown, 
black under tail, black upperparts.”

Fig. 2. Examples of birds and their attributes. On the left are some bird species
with the CUB annotations indicating color and texture of body parts. On the right are
automatically generated prompts based on these attributes for zero-shot learning.

Once again, we compare the two models, DTML and CLIP, on the CUB
dataset [21]. Images in this dataset differ from the types of images in DTD
which poses a significant domain shift for DTML. For evaluation we select 17
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Query: “blue” Query: “striped”

Query: “multi-colored”Query: “red”

GT

CLIP

DTML

GT

CLIP

DTML

Fig. 3. Image retrieval on CUB. For each query we show 5 ground-truth and top
images retrieved using CLIP and DTML. CLIP primarily associates attributes with
the foreground — e.g., the query “blue” is only associated with blue birds for CLIP,
while the DTML retrieves both blue birds and the background water.

attributes that both occur in DTD2 and CUB dataset. Images with an attribute
on any part, i.e., “striped” on wing, upper-parts, or back, are counted as positives
for the attribute, i.e., “striped”.

Table 6 shows the retrieval performance of DTML and CLIP. CLIP performs
better than DTML on image retrieval and they perform similarly on phrase re-
trieval. Figure 3 shows example retrieved images. CLIP focuses on the foreground
while DTML recognizes attributes from the background as well. For example,
CLIP retrieves “blue” birds, while DTML retrieves images with a “blue” back-
ground such as water. DTML retrievals are from different categories, but CLIP
tends to return images of the same category, which implies that CLIP image
features are highly related to categories such that images of the same category
are close to each other in the embedding space.

Table 7. Zero-shot classification top-k accuracy on CUB test set using CLIP
with different levels of category names and attributes. In the brackets we show
the number of categories for each level, .e.g., there are 115 different genus names.

category name(200) species(200) genus(115) family(39) order(12) “bird”(1)

#attribute 0 15 0 15 0 15 0 15 0 15 15

top-1 51.8 50.2 6.6 14.3 15.4 14.4 10.8 12.9 6.6 12.5 12.1
top-5 82.7 81.6 19.2 41.0 18.8 40.5 11.5 36.0 6.7 35.4 35.8
top-10 91.0 91.3 24.9 56.6 20.8 53.3 17.3 51.9 11.3 51.5 52.3

Zero-Shot Classification with Attributes. To construct a list of attributes for
each category, for each attribute we estimate the ratio of images that contain
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the attribute within a category to the images that contain that attribute across
all categories. Top k such attributes are added to prompts for the category in
the format “an image of a [P ] [C] with [P1] [N1], [P2] [N2], ...” where C is
the category label, P are attributes of the entire bird, Ni are body parts (such
as “belly”, “tail”) and Pi are attributes for the part Ni. Figure 2 shows three
examples of constructed descriptions. The attributes reflect subtle differences
among the three similar species, e.g., “Rhinoceros Auklet” is more “duck-like”
with “buff leg”, “Parakeet Auklet” has “white eye” and “white belly”, “Crested
Auklet” has “crested head” and “black nape”. We also use different choices for
the category label, varying them from the common name to scientific names at
different levels of the biological taxonomy. The common name is often used to
describe the category and be associated with the corresponding images on the
Internet. Scientific names at various levels in the taxonomy are less likely to have
been observed by the language models.

Classification results are shown in Table 7. We report the top-k accuracy for
the 200-way classification. When no attribute is added, we construct the descrip-
tion simply as “an image of a [C]” where [C] can be the common name, species,
genus, family, or order. In such cases species from the same genus, family or
order have the same category embedding resulting in ties. There is a significant
performance drop when using scientific names compared to the common names.
CLIP has learned plenty about the common names during training as it exploits
images available on the web but fails when using species names which are rel-
atively rare. Adding attributes to the descriptions improves performance by a
large margin in this case, especially on the top 5/10 accuracy. With the help of
attributes, we achieve similar performance when we replace the scientific names
with the generic category description “bird”.

4 Conclusion and Limitations

We analyze how well CLIP recognizes describable properties of texture in natu-
ral images. Remarkably, CLIP achieves strong zero-shot performance for texture
classification, outperforming strong baselines on texture image and phrase re-
trieval on DTD2. Texture understanding is also effective on natural images of
birds for attributes that describe the color and texture of body parts. This brings
up the exciting possibility of applying similar models on other fine-grained do-
mains such as fashion, Fungi, and Butterflies. At the same time, we observe a
foreground bias in the model, which might not be desirable when referring to
attributes of the background or non-central object in the image. We hope this
contributes to a better understanding of performance and biases of CLIP for
various applications.



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV
#1

ECCV
#1

ECCV-22 submission ID 1 9

References

1. Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan,
Yu Cheng, and Jingjing Liu. UNITER: Learning universal image-text representa-
tions. In European Conference on Computer Vision (ECCV), 2020. 1

2. Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. Describing textures in the wild. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2014. 1

3. Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. Deep filter banks for texture
recognition and segmentation. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2015. 3

4. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for im-
age recognition at scale. In International Conference on Learning Representations
(ICLR), 2021. 1, 2

5. Mario Fritz, Eric Hayman, Barbara Caputo, and Jan-Olof Eklundh. The KTH-
TIPS database. 2004. 1

6. Zilin Gao, Jiangtao Xie, Qilong Wang, and Peihua Li. Global second-order pooling
convolutional networks. In Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 3

7. Xiuye Gu, Tsung-Yi Lin, Weicheng Kuo, and Yin Cui. Open-vocabulary Object
Detection via Vision and Language Knowledge Distillation. In International Con-
ference on Learning Representations, 2021. 1

8. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 2

9. Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V
Le, Yunhsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-
language representation learning with noisy text supervision. arXiv:2102.05918,
2021. 1

10. Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-
efficient prompt tuning. arXiv:2104.08691, 2021. 2

11. Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for
generation. arXiv:2101.00190, 2021. 2

12. Tsung-Yu Lin, Subhransu Maji, and Piotr Koniusz. Second-order democratic ag-
gregation. In European Conference on Computer Vision (ECCV), 2018. 3

13. Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear CNN mod-
els for fine-grained visual recognition. In International Conference on Computer
Vision (ICCV), 2015. 3

14. Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Gra-
ham Neubig. Pre-train, prompt, and predict: A systematic survey of prompting
methods in natural language processing. arXiv:2107.13586, 2021. 2
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