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Abstract. Learned representations are a central component in modern
ML systems, serving a multitude of downstream tasks. When train-
ing such representations, it is often the case that computational and
statistical constraints for each downstream task are unknown. In this
context, rigid fixed-capacity representations can be either over or under-
accommodating to the task at hand. This leads us to ask: can we design
a flexible representation that can adapt to multiple downstream tasks
with varying computational resources? Our main contribution is Ma-
tryoshka Representation Learning (MRL) which encodes information at
different granularities and allows a single embedding to adapt to the
computational constraints of downstream tasks. MRL minimally modifies
existing representation learning pipelines and imposes no additional cost
during inference and deployment. MRL learns coarse-to-fine represen-
tations that are at least as accurate and rich as independently trained
low-dimensional representations. The flexibility within the learned Ma-
tryoshka Representations offer: (a) up to 14× smaller embedding size for
ImageNet-1K classification at the same level of accuracy; (b) up to 14×
real-world speed-ups for large-scale retrieval on ImageNet-1K and 4K;
and (c) up to 2% accuracy improvements for long-tail few-shot classifi-
cation, all while being as robust as the original representations. Finally,
we show that MRL extends seamlessly to web-scale datasets (ImageNet,
JFT) across various modalities – vision (ViT, ResNet), vision + language
(ALIGN) and language (BERT). MRL code and pretrained models are
open-sourced at removed for double blind.

Keywords: Large-scale Representation Learning, Adaptive Deployment

1 Introduction

Learned representations [26] are fundamental building blocks of real-world ML
systems [31, 45]. Trained once and frozen, d-dimensional representations encode
rich information and can be used to perform multiple downstream tasks [3].
The deployment of deep representations has two steps: (1) an expensive yet
constant-cost forward pass to compute the representation [13] and (2) utilization
of the representation for downstream applications [22, 43]. Compute costs for
the latter part of the pipeline scale with the embedding dimensionality as well as
the data size (N) and label space (L). At web-scale [7, 41] this utilization cost
overshadows the feature computation cost. The rigidity in these representations
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forces the use of high-dimensional embedding vectors across multiple tasks despite
the varying resource and accuracy constraints that require flexibility.

Human perception of the natural world has a naturally coarse-to-fine gran-
ularity [11, 14]. However, perhaps due to the inductive bias of gradient-based
training [40], deep learning models tend to diffuse “information” across the entire
representation vector. The desired elasticity is usually enabled in the existing flat
and fixed representations either through training multiple low-dimensional mod-
els [13], jointly optimizing sub-networks of varying capacity [4, 51] or post-hoc
compression [18, 28]. Each of these techniques struggle to meet the requirements
for adaptive large-scale deployment either due to training/maintenance overhead,
numerous expensive forward passes through all of the data, storage and memory
cost for multiple copies of encoded data, expensive on-the-fly feature selection or
a significant drop in accuracy. By encoding coarse-to-fine-grained representations,
which are as accurate as the independently trained counterparts, we learn with
minimal overhead a representation that can be deployed adaptively at no addi-
tional cost during inference. Please note that a detailed description of related
works in the context of representation learning and efficient classification and
retrieval is provided in the original paper [23].

We introduce Matryoshka Representation Learning (MRL) to induce
flexibility in the learned representation. MRL learns representations of varying
capacities within the same high-dimensional vector through explicit optimiza-
tion of O(log(d)) lower-dimensional vectors in a nested fashion, hence the name
Matryoshka. MRL can be adapted to any existing representation pipeline and
is easily extended to many standard tasks in computer vision and natural lan-
guage processing. Figure 1 illustrates the core idea of Matryoshka Represen-
tation Learning (MRL) and the adaptive deployment settings of the learned
Matryoshka Representations.

Adaptive Retrieval

Shortlisting

Re-ranking

Adaptive Classification

TrainingInference

<latexit sha1_base64="eh9hk+peBkdsPY6v+r4rONmxYLY=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBU9kVoR6LXjxWsB/QLiWbZtvQbBKSrFCW/ggvHhTx6u/x5r8x2+5BWx8MPN6bYWZepDgz1ve/vdLG5tb2Tnm3srd/cHhUPT7pGJlqQttEcql7ETaUM0HblllOe0pTnEScdqPpXe53n6g2TIpHO1M0TPBYsJgRbJ3UHUjFU1MZVmt+3V8ArZOgIDUo0BpWvwYjSdKECks4NqYf+MqGGdaWEU7nlUFqqMJkise076jACTVhtjh3ji6cMkKx1K6ERQv190SGE2NmSeQ6E2wnZtXLxf+8fmrjmzBjQqWWCrJcFKccWYny39GIaUosnzmCiWbuVkQmWGNiXUJ5CMHqy+ukc1UP/HrwcF1r3hZxlOEMzuESAmhAE+6hBW0gMIVneIU3T3kv3rv3sWwtecXMKfyB9/kDBrKPWQ==</latexit>

<latexit sha1_base64="szvlzTDYQEH5M/GSBtp0D9XaTiU=">AAAB/HicbVDLSsNAFL2pr1pf0S7dDBahbkoiguKq6MaFiwr2AW0Ik8m0HTp5MDMRYqi/4saFIm79EHf+jZM2C209MHA4517umePFnEllWd9GaWV1bX2jvFnZ2t7Z3TP3DzoySgShbRLxSPQ8LClnIW0rpjjtxYLiwOO0602uc7/7QIVkUXiv0pg6AR6FbMgIVlpyzeogwGpMMEe39Uc3sy/96Ylr1qyGNQNaJnZBalCg5ZpfAz8iSUBDRTiWsm9bsXIyLBQjnE4rg0TSGJMJHtG+piEOqHSyWfgpOtaKj4aR0C9UaKb+3shwIGUaeHoyjyoXvVz8z+snanjhZCyME0VDMj80TDhSEcqbQD4TlCieaoKJYDorImMsMFG6r4ouwV788jLpnDZsq2HfndWaV0UdZTiEI6iDDefQhBtoQRsIpPAMr/BmPBkvxrvxMR8tGcVOFf7A+PwBd6WT/A==</latexit>

<latexit sha1_base64="EDzxxYGdFHE0OT/8r1yzvduiKkY=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVOTIiiuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqP6Fk7IwThQNyexQP+FIRSjrAvlMUKL4WBNMBNNZERligYnSjZV0Cfb8lxdJq1a1rap9d1auX+V1FOEQjqACNpxDHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPYdOUcQ==</latexit>

<latexit sha1_base64="GlggPMD8z4lB+hiIvM4R0NcwGwo=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMTKSiuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqP6Fk7IwThQNyexQP+FIRSjrAvlMUKL4WBNMBNNZERligYnSjZV0Cfb8lxdJ66xqW1X7rlauX+V1FOEQjqACNpxDHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPZN+Ucw==</latexit>

<latexit sha1_base64="tEtInXKd9mqmi/oFctu/VjSe+v0=">AAAB/nicbVDLSsNAFL2pr1pfUXHlZrAIdVMTESyuim5cuKhgH9CGMJlM26GTBzMToYaCv+LGhSJu/Q53/o2TNgttPTBwOOde7pnjxZxJZVnfRmFpeWV1rbhe2tjc2t4xd/daMkoEoU0S8Uh0PCwpZyFtKqY47cSC4sDjtO2NrjO//UCFZFF4r8YxdQI8CFmfEay05JoHvQCrIcEc3VYe3dS+9E9rkxPXLFtVawq0SOyclCFHwzW/en5EkoCGinAsZde2YuWkWChGOJ2UeomkMSYjPKBdTUMcUOmk0/gTdKwVH/UjoV+o0FT9vZHiQMpx4OnJLKyc9zLxP6+bqH7NSVkYJ4qGZHaon3CkIpR1gXwmKFF8rAkmgumsiAyxwETpxkq6BHv+y4ukdVa1rap9d16uX+V1FOEQjqACNlxAHW6gAU0gkMIzvMKb8WS8GO/Gx2y0YOQ7+/AHxucPaveUdw==</latexit>

<latexit sha1_base64="dyCsZ/ny7rQzKcXztjElUtg2QPg=">AAAB/3icbVDLSgMxFM3UV62vUcGNm2AR6qZORFRcFd24cFHBPqAdhkwmbUMzmSHJCHXswl9x40IRt/6GO//GTDsLrR4IHM65l3ty/JgzpR3nyyrMzS8sLhWXSyura+sb9uZWU0WJJLRBIh7Jto8V5UzQhmaa03YsKQ59Tlv+8DLzW3dUKhaJWz2KqRvivmA9RrA2kmfvdEOsBwRzeF2591J0Hhyik/GBZ5edqjMB/EtQTsogR92zP7tBRJKQCk04VqqDnFi7KZaaEU7HpW6iaIzJEPdpx1CBQ6rcdJJ/DPeNEsBeJM0TGk7UnxspDpUahb6ZzNKqWS8T//M6ie6duSkTcaKpINNDvYRDHcGsDBgwSYnmI0MwkcxkhWSAJSbaVFYyJaDZL/8lzaMqcqro5rhcu8jrKIJdsAcqAIFTUANXoA4agIAH8ARewKv1aD1bb9b7dLRg5Tvb4Besj2/eCZSw</latexit>

<latexit sha1_base64="OPHM4ACsGr0VI7qMpDgoN+t2ICI=">AAAB9XicbVDLSgMxFL3xWeur6tJNsAh1U2ZE0GXRjQsXFewD2rFk0kwbmskMSUapQ//DjQtF3Pov7vwbM+0stPVA4HDOvdyT48eCa+M432hpeWV1bb2wUdzc2t7ZLe3tN3WUKMoaNBKRavtEM8ElaxhuBGvHipHQF6zlj64yv/XAlOaRvDPjmHkhGUgecEqMle67ITHDQJERvqk8nfRKZafqTIEXiZuTMuSo90pf3X5Ek5BJQwXRuuM6sfFSogyngk2K3USzmNARGbCOpZKETHvpNPUEH1ulj4NI2ScNnqq/N1ISaj0OfTuZpdTzXib+53USE1x4KZdxYpiks0NBIrCJcFYB7nPFqBFjSwhV3GbFdEgUocYWVbQluPNfXiTN06rrVN3bs3LtMq+jAIdwBBVw4RxqcA11aAAFBc/wCm/oEb2gd/QxG11C+c4B/AH6/AGZEJHn</latexit>

Fig. 1: Matryoshka Representation Learning
is adaptable to any representation learning setup
and begets a Matryoshka Representation z by op-
timizing the original loss L(.) at O(log(d)) chosen
representation sizes. Matryoshka Representation
can be utilized effectively for adaptive deployment
across environments and downstream tasks.

The first m-dimensions, m ∈
[d], of the Matryoshka Repre-
sentation is an information-rich
low-dimensional vector, at no ad-
ditional training cost, that is
as accurate as an independently
trained m-dimensional represen-
tation. The information within
the Matryoshka Representation
increases with the dimension-
ality creating a coarse-to-fine
grained representation, all with-
out significant training or ad-
ditional deployment overhead.
MRL equips the representation
vector with the desired flexibil-
ity and multifidelity that can en-
sure a near-optimal accuracy-vs-
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compute trade-off. With these advantages, MRL enables adaptive deployment
based on accuracy and compute constraints.

The Matryoshka Representations improve efficiency for large-scale classifi-
cation and retrieval without any significant loss of accuracy. While there are
potentially several applications of coarse-to-fine Matryoshka Representations, in
this work we focus on two key building blocks of real-world ML systems: large-
scale classification and retrieval. For classification, we use adaptive cascades with
the variable-size representations from a model trained with MRL, significantly
reducing the average dimension of embeddings needed to achieve a particular
accuracy. For example, on ImageNet-1K, MRL + adaptive classification results
in up to a 14× smaller representation size at the same accuracy as baselines
(Section 3.2). Similarly, we use MRL in an adaptive retrieval system. Given a
query, we shortlist retrieval candidates using the first few dimensions of the query
embedding, and then successively use more dimensions to re-rank the retrieved
set. A simple implementation of this approach leads to 128× theoretical (in terms
of FLOPS) and 14× wall-clock time speedups compared to a single-shot retrieval
system that uses a standard embedding vector; note that MRL’s retrieval accu-
racy is comparable to that of single-shot retrieval (Section 3.3). This is reflected
in up to 2% accuracy gains in long-tail continual learning settings while being as
robust as the original embeddings. Furthermore, due to its coarse-to-fine grained
nature, MRL can also be used as method to analyze hardness of classification
among instances and information bottlenecks.

We make the following key contributions:

1. We introduce Matryoshka Representation Learning (MRL) to obtain flex-
ible representations (Matryoshka Representations) for adaptive deployment
(Section 2).

2. Up to 14× faster yet accurate large-scale classification and retrieval using
MRL (Section 3).

3. Seamless adaptation of MRL across modalities (vision - ResNet & ViT, vision
+ language - ALIGN, language - BERT) and to web-scale data (ImageNet-
1K/4K, JFT-300M and ALIGN data).

4. Further analysis of MRL’s representations in the context of other downstream
tasks (Section 4).

2 Matryoshka Representation Learning

For d ∈ N, consider a set M ⊂ [d] of representation sizes. For a datapoint
x in the input domain X , our goal is to learn a d-dimensional representation
vector z ∈ Rd. For every m ∈ M, Matryoshka Representation Learning (MRL)
enables each of the first m dimensions of the embedding vector, z1:m ∈ Rm to be
independently capable of being a transferable and general purpose representation
of the datapoint x. We obtain z using a deep neural network F ( · ; θF ) : X → Rd

parameterized by learnable weights θF , i.e., z := F (x; θF ). The multi-granularity
is captured through the set of the chosen dimensions M, that contains less than
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log(d) elements, i.e., |M| ≤ ⌊log(d)⌋. The usual set M consists of consistent
halving until the representation size hits a low information bottleneck. We discuss
the design choices in Section 3 for each of the representation learning settings.

For the ease of exposition, we present the formulation for fully supervised
representation learning via multi-class classification. Matryoshka Representation
Learning modifies the typical setting to become a multi-scale representation
learning problem on the same task. For example, we train ResNet50 [13] on
ImageNet-1K [34] which embeds a 224× 224 pixel image into a d = 2048 repre-
sentation vector and then passed through a linear classifier to make a prediction,
ŷ among the L = 1000 labels. For MRL, we choose M = {8, 16, . . . , 1024, 2048}
as the nesting dimensions.

Suppose we are given a labelled dataset D = {(x1, y1), . . . , (xN , yN )} where
xi ∈ X is an input point and yi ∈ [L] is the label of xi for all i ∈ [N ]. MRL
optimizes the multi-class classification loss for each of the nested dimension
m ∈ M using standard empirical risk minimization using a separate linear
classifier, parameterized by W(m) ∈ RL×m. All the losses are aggregated after
scaling with their relative importance (cm ≥ 0)m∈M respectively. That is, we
solve

min
{W(m)}

m∈M
, θF

1

N

∑
i∈[N ]

∑
m∈M

cm · L
(
W(m) · F (xi; θF )1:m ; yi

)
, (1)

where L : RL × [L] → R+ is the multi-class softmax cross-entropy loss function.
This is a standard optimization problem that can be solved using sub-gradient
descent methods. We set all the importance scales, cm = 1 for all m ∈ M; see
Section 4 for ablations. Lastly, despite only optimizing for O(log(d)) nested dimen-
sions, MRL results in accurate representations, that interpolate, for dimensions
that fall between the chosen granularity of the representations (Section 3.2).

We call this formulation as Matryoshka Representation Learning (MRL). A
natural way to make this efficient is through weight-tying across all the linear
classifiers, i.e., by defining W(m) = W1:m for a set of common weights W ∈ RL×d.
This would reduce the memory cost due to the linear classifiers by almost
half, which would be crucial in cases of extremely large output spaces [43, 50].
This variant is called Efficient Matryoshka Representation Learning (MRL–E).
Refer to Alg 1 and Alg 2 in Appendix A for the building blocks of Matryoshka
Representation Learning (MRL).

Adaptation to Learning Frameworks. MRL can be adapted seamlessly to most
representation learning frameworks at web-scale with minimal modifications
(Section 3.1). For example, MRL’s adaptation to masked language modelling
reduces to MRL–E due to the weight-tying between the input embedding matrix
and the linear classifier. For contrastive learning, both in context of vision & vision
+ language, MRL is applied to both the embeddings that are being contrasted
with each other. The presence of normalization on the representation needs to
be handled independently for each nesting dimension for the best results (see
Appendix C for more details).
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Fig. 2: ImageNet-1K linear classification
accuracy of ResNet50 models. MRL is as
accurate as the independently trained FF
models for every representation size.
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Fig. 3: ImageNet-1K 1-NN accuracy for
ViT-B/16 models trained on JFT-300M &
as part of ALIGN. MRL scales seamlessly
to web-scale with minimal overhead.

3 Applications

In this section, we discuss Matryoshka Representation Learning (MRL) for a
diverse set of applications along with an extensive evaluation of the learned
multifidelity representations. Further, we showcase the downstream applications
of the learned Matryoshka Representations for flexible large-scale deployment
through (a) Adaptive Classification (AC) and (b) Adaptive Retrieval (AR).

3.1 Representation Learning

We adapt Matryoshka Representation Learning (MRL) to various representation
learning setups (a) Supervised learning for vision: ResNet50 [13] on ImageNet-
1K [34] and ViT-B/16 [10] on JFT-300M [41], (b) Contrastive learning for vision
+ language: ALIGN model with ViT-B/16 vision encoder and BERT language
encoder on ALIGN data [19] and (c) Masked language modelling: BERT [9] on
English Wikipedia and BooksCorpus [52]. Please refer to Appendices B and C
for details regarding the model architectures, datasets and training specifics.

3.2 Classification

Figure 2 compares the linear classification accuracy of ResNet50 models trained
and evaluated on ImageNet-1K. ResNet50–MRL model is at least as accurate
as each FF model at every representation size in M while MRL–E is within
1% starting from 16-dim. We also evaluate the quality of the representations
from training ViT-B/16 on JFT-300M alongside the ViT-B/16 vision encoder of
the ALIGN model – two web-scale setups. Due to the expensive nature of these
experiments, we only train the highest capacity fixed feature model and choose
random features for evaluation in lower-dimensions. Web-scale is a compelling
setting for MRL due to its relatively inexpensive training overhead while providing
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multifidelity representations for downstream tasks. Figure 3, evaluated with 1-
NN on ImageNet-1K, shows that all the MRL models for JFT and ALIGN
are highly accurate while providing an excellent cost-vs-accuracy trade-off at
lower-dimensions. We also have similar observations when pretraining BERT;
please see Appendix D.2 for more details.

Adaptive Classification The flexibility and coarse-to-fine granularity within
Matryoshka Representations allows model cascades [44] for Adaptive Classification
(AC) [11]. Unlike standard model cascades [48], MRL does not require multiple
expensive neural network forward passes. To perform AC with an MRL trained
model, we learn thresholds on the maximum softmax probability [16] for each
nested classifier on a holdout validation set. We then use these thresholds to decide
when to transition to the higher dimensional representation (e.g 8 → 16 → 32)
of the MRL model (see Appendix D.1). As seen in Figure 4, cascaded MRL
model (MRL–AC) is as accurate, 76.30%, as a 512-dimensional FF model but
requires an expected dimensionality of ∼ 37 while being only 0.8% lower than
the 2048-dimensional FF baseline, where the expected dimensionality is based on
the final dimensionality used in the cascade. MRL–AC uses up to ∼ 14× smaller
representation size for the same accuracy which affords computational efficiency
as the label space grows [43]. Lastly, our results with MRL–AC indicate that
instances and classes vary in difficulty (See Section 4 and Appendix J).

3.3 Retrieval

Nearest neighbour search with learned representations powers a plethora of
retrieval and search applications [7, 45, 5, 31]. In this section, we discuss the
image retrieval performance of the pretrained ResNet50 models (Section 3.1) on
two large-scale datasets ImageNet-1K [34] and ImageNet-4K (Appendix B).

The goal of image retrieval is to find images that belong to the same class as
the query using representations obtained from a pretrained model. In this section,
we compare retrieval performance using mean Average Precision @ 10 (mAP@10)
which comprehensively captures the setup of relevant image retrieval at scale.
We measure the cost per query using exact search in MFLOPs. All embeddings
are unit normalized and retrieved using the L2 distance metric. Lastly, we report
an extensive set of metrics spanning mAP@k and P@k for k = {10, 25, 50, 100}
and real-world wall-clock times for exact search and HNSW. See Appendices E
and F for more details.

Figure 5 compares the mAP@10 performance of ResNet50 representations
on ImageNet-1K across dimensionalities for MRL, MRL–E, FF, slimmable net-
works [51] along with post-hoc compression of vectors using SVD and random
feature selection. Matryoshka Representations are often the most accurate while
being up to 3% better than the FF baselines. Similar to classification, post-hoc
compression and slimmable network baselines suffer from significant drop-off in
retrieval mAP@10 with ≤ 256 dimensions. Appendix E discusses the mAP@10 of
the same models on ImageNet-4K. MRL models are thus capable of performing
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14x smaller 
representation size

Fig. 4: Adaptive classification on MRL
ResNet50 using cascades results in 14×
smaller representation size for the same
level of accuracy on ImageNet-1K (∼ 37
vs 512 dims for 76.3%).
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Fig. 5: mAP@10 for Image Retrieval
on ImageNet-1K with ResNet50. MRL
consistently produces better retrieval
performance over the baselines across
all the representation sizes.

accurate retrieval at various granularities without the additional expense of
multiple model forward passes for the web-scale databases.

Adaptive Retrieval We benchmark MRL in the adaptive retrieval setting
(AR) [22]. For a given query image, we obtain a shortlist, K = 200, of images
from the database using a lower-dimensional representation, eg., Ds = 16 followed
by reranking with a higher capacity representation, eg., Dr = 2048. In real-world
scenarios where top ranking performance is the key objective, measured with
mAP@k where k covers a limited yet crucial real-estate, AR provides significant
compute and memory gains over single-shot retrieval with representations of fixed
dimensionality. Finally, the most expensive part of AR, as with any retrieval
pipeline, is the nearest neighbour search for shortlisting. For example even naive
re-ranking of 200 images with 2048 dimensions only costs 400 KFLOPs. While we
report exact search cost per query for all of the AR, the shortlisting component
of the pipeline can be sped-up using ANNS (HNSW). Appendix I has a detailed
discussion on compute cost for exact search, memory overhead of HNSW indices
and wall-clock times for both implementations. We note that using HNSW with
32 neighbours for shortlisting does not decrease accuracy during retrieval. We
provide a detailed discussion of Adaptive Retrieval in Appendix E.

4 Further Analysis and Ablations

Robustness. We evaluate the robustness of the MRL models trained on ImageNet-
1K on out-of-domain datasets, ImageNetV2/R/A/Sketch [33, 15, 17, 47], and
compare them to the FF baselines. Table 17 in Appendix H demonstrates that
Matryoshka Representations for classification are at least as robust as the original
representation while improving the performance on ImageNet-A by 0.6% – a 20%
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relative improvement. We also study the robustness in the context of retrieval
by using ImageNetV2 as the query set for ImageNet-1K database. Table 9 in
Appendix E shows that MRL models have more robust retrieval compared to
the FF baselines by having up to 3% higher mAP@10 performance. We also find
that the zero-shot robustness of ALIGN-MRL (Table 18 in Appendix H) agrees
with the observations made by Wortsman et al. [49].

Few-shot and Long-tail Learning. We exhaustively evaluate few-shot learning on
MRL models using nearest class mean [35], which is detailed in Appendix G. We
notably observe that MRL provides up to 2% accuracy higher on novel classes in
the tail of the distribution, without sacrificing accuracy on other classes on the
FLUID [46] framework.

Disagreement across Dimensions. The information packing in Matryoshka Repre-
sentations often results in gradual increase of accuracy with increase in capacity.
However, we observe that this trend is not ubiquitous and certain instances
and classes are more accurate when evaluated with lower-dimensions, which is
discussed in more detail in Appendix J).

4.1 Ablations

Table 26 in Appendix K presents that Matryoshka Representations can be enabled
within off-the-shelf pretrained models with inexpensive partial finetuning thus
paving a way for ubiquitous adoption of MRL. At the same time, Table 27 in
Appendix C indicates that with optimal weighting of the nested losses we could
improve accuracy of lower-dimensions representations without accuracy loss.

5 Discussion and Conclusions

The results in Section 4.1 reveal interesting weaknesses of MRL that would be
logical directions for future work. (1) Optimizing the weightings of the nested
losses to obtain a Pareto optimal accuracy-vs-efficiency trade-off. (2) Using
different losses at various fidelities aimed at solving a specific aspect of adaptive
deployment – e.g. high recall for 8-dimension and robustness for 2048-dimension.
(3) Finally, learning a search data-structure, like differentiable k-d tree, on top of
Matryoshka Representation to enable dataset and representation aware retrieval.

In conclusion, we presented Matryoshka Representation Learning (MRL),
a flexible representation learning approach that encodes information at multiple
granularities in a single embedding vector. This enables the MRL to adapt to a
downstream task’s statistical complexity as well as the available compute resources.
We demonstrate that MRL can be used for large-scale adaptive classification as
well as adaptive retrieval. On standard benchmarks, MRL matches the accuracy
of the fixed-feature baseline despite using 14× smaller representation size on
average. Finally, most of the efficiency techniques for model inference and vector
search are complementary to MRL further assisting in deployment at the
compute-extreme environments.
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A Code for Matryoshka Representation Learning

We use Alg 1 and 2 provided below to train supervised ResNet50–MRL models
on ImageNet-1K. We provide this template to extend MRL to any domain.

Algorithm 1 Pytorch code for Matryoshka Cross-Entropy Loss

class Matryoshka_CE_Loss(nn.Module):
def __init__(self, relative_importance, **kwargs):

super(Matryoshka_CE_Loss, self).__init__()
self.criterion = nn.CrossEntropyLoss(**kwargs)
self.relative_importance = relative_importance # usually set to all

ones

def forward(self, output, target):
loss=0
for i in range(len(output)):
loss+= self.relative_importance[i] * self.criterion(output[i],

target)
return loss

Algorithm 2 Pytorch code for MRL Linear Layer

class MRL_Linear_Layer(nn.Module):
def __init__(self, nesting_list: List, num_classes=1000, efficient=False,

**kwargs):
super(MRL_Linear_Layer, self).__init__()
self.nesting_list=nesting_list # set of m in M (Eq. 1)
self.num_classes=num_classes
self.is_efficient=efficient # flag for MRL-E

if not is_efficient:
for i, num_feat in enumerate(self.nesting_list):

setattr(self, f"nesting_classifier_{i}", nn.Linear(num_feat,
self.num_classes, **kwargs))

else:
setattr(self, "nesting_classifier_0", nn.Linear(self.nesting_list

[-1], self.num_classes, **kwargs)) # Instantiating one nn.
Linear layer for MRL-E

def forward(self, x):
nesting_logits = ()
for i, num_feat in enumerate(self.nesting_list):

if(self.is_efficient):
efficient_logit = torch.matmul(x[:, :num_feat], (

self.nesting_classifier_0.weight[:, :num_feat]).
t())

else:
nesting_logits.append(getattr(self, f"

nesting_classifier_{i}")(x[:, :num_feat]))

if(self.is_efficient):
nesting_logits.append(efficient_logit)

return nesting_logits
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B Datasets

ImageNet-1K [34] contains 1,281,167 labeled train images, and 50,000 labelled
validation images across 1,000 classes. The images were transformed with standard
procedures detailed by FFCV [25].

ImageNet-4K dataset was constructed by selecting 4,202 classes, non-
overlapping with ImageNet-1K, from ImageNet-21K [8] with 1,050 or more
examples. The train set contains 1,000 examples and the query/validation set
contains 50 examples per class totalling to ∼4.2M and ∼200K respectively. We
will release the list of images curated together to construct ImageNet-4K.

JFT-300M [41] is a large-scale multi-label dataset with 300M images labelled
across 18,291 categories.

ALIGN [19] utilizes a large scale noisy image-text dataset containing 1.8B
image-text pairs.

ImageNet Robustness Datasets We experimented on the following datasets to
examine the robustness of MRL models:

ImageNetV2 [33] is a collection of 10K images sampled a decade after the
original construction of ImageNet [8]. ImageNetV2 contains 10 examples each
from the 1,000 classes of ImageNet-1K.

ImageNet-A [17] contains 7.5K real-world adversarially filtered images from
200 ImageNet-1K classes.

ImageNet-R [15] contains 30K artistic image renditions for 200 of the
original ImageNet-1K classes.

ImageNet-Sketch [47] contains 50K sketches, evenly distributed over all
1,000 ImageNet-1K classes.

ObjectNet [2] contains 50K images across 313 object classes, each containing
∼160 images each.

C Matryoshka Representation Learning Model Training

We trained all ResNet50–MRL models using the efficient dataloaders of FFCV [25].
We utilized the rn50_40_epochs.yaml configuration file of FFCV to train all
MRL models defined below:

– MRL: ResNet50 model with the fc layer replaced by MRL_Linear_Layer(efficient
=False)

– MRL–E: ResNet50 model with the fc layer replaced by MRL_Linear_Layer(
efficient=True)

– FF–k: ResNet50 model with the fc layer replaced by torch.nn.Linear(k, num_classes
), where k ∈ [8, 16, 32, 64, 128, 256, 512, 1024, 2048]. We will henceforth refer to
these models as simply FF, with the k value denoting representation size.

We do not search for best hyper-parameters for all MRL experiments but use
the same hyper-parameters as the independently trained baselines. ResNet50 out-
puts a 2048-dimensional representation while ViT-B/16 and BERT-Base output

rn50_40_epochs.yaml
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768-dimensional embeddings for each data point. We use M = {8, 16, 32, 64, 128,
256, 512, 1024, 2048} and M = {12, 24, 48, 96, 192, 384, 768} as the explicitly
optimized nested dimensions respectively.

We trained all ResNet50 models with a learning rate of 0.475 with a cyclic
learning rate schedule [39]. This was after appropriate scaling (0.25×) of the learn-
ing rate specified in the configuration file to accommodate for 2xA100 NVIDIA
GPUs available for training, compared to the 8xA100 GPUs utilized in the FFCV
benchmarks. We trained with a batch size of 256 per GPU, momentum [42] of
0.9, and an SGD optimizer with a weight decay of 1e-4.

Our code (Appendix A) makes minimal modifications to the training pipeline
provided by FFCV to learn Matryoshka Representations.

We trained ViT-B/16 models for JFT-300M on a 8x8 cloud TPU pod [21]
using Tensorflow [1] with a batchsize of 128 and trained for 300K steps. Similarly,
ALIGN models were trained using Tensorflow on 8x8 cloud TPU pod for 1M
steps with a batchsize of 64 per TPU. Both these models were trained with
adafactor optimizer [37] with a linear learning rate decay starting at 1e-3.

Lastly, we trained a BERT-Base model on English Wikipedia and BookCorpus.
We trained our models in Tensorflow using a 4x4 cloud TPU pod with a total
batchsize of 1024. We used AdamW [29] optimizer with a linear learning rate
decay starting at 1e-4 and trained for 450K steps.

In each configuration/case, if the final representation was normalized in the
FF implementation, MRL models adopted the same for each nested dimension
for a fair comparison.

D Classification Results

Table 1: Top-1 classification accuracy (%) for ResNet50 MRL and baseline models
on ImageNet-1K.

Rep. Size Rand. LP SVD FF Slim. Net MRL MRL–E

8 4.56 2.34 65.29 0.42 66.63 56.66
16 11.29 7.17 72.85 0.96 73.53 71.94
32 27.21 20.46 74.60 2.27 75.03 74.48
64 49.47 48.10 75.27 5.59 75.82 75.35
128 65.70 67.24 75.29 14.15 76.30 75.80
256 72.43 74.59 75.71 38.42 76.47 76.22
512 74.94 76.78 76.18 69.80 76.65 76.36
1024 76.10 76.87 76.63 74.61 76.76 76.48
2048 76.87 – 76.87 76.26 76.80 76.51

We show the top-1 classification accuracy of ResNet50–MRL models on
ImageNet-1K in Table 1 and Figure 2. We compare the performance of MRL
models (MRL, MRL–E) to several baselines:

– FF: We utilize the FF-k models described in Appendix C for k ∈ {8, ...2048}.
– SVD: We performed a low rank approximation of the 1000-way classification

layer of FF-2048, with rank = 1000.
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– Rand. LP: We compared against a linear classifier fit on randomly selected
features [12].

– Slim. Net: We take pretrained slimmable neural networks [51] which are
trained with a flexible width backbone (25%, 50%, 75% and full width). For
each representation size, we consider the first k dimensions for classification.
Note that training of slimmable neural networks becomes unstable when trained
below 25% width due to the hardness in optimization and low complexity of
the model.

At lower dimensions ( d ≤ 128), MRL outperforms all baselines significantly,
which indicates that pretrained models lack the multifidelity of Matryoshka Rep-
resentations and are incapable of fitting an accurate linear classifier at low
representation sizes.

We compared the performance of MRL models at various representation sizes
via 1-nearest neighbors (1-NN) image classification accuracy on ImageNet-1K in
Table 2. We provide detailed information regarding the k-NN search pipeline in
Appendix E. We compared against a baseline of attempting to enforce nesting to a
FF-2048 model by 1) Random Feature Selection (Rand. FS): considering the first
m dimensions of FF-2048 for NN lookup, and 2) FF+SVD: performing SVD on
the FF-2048 representations at the specified representation size. We also compared
against the 1-NN accuracy of slimmable neural nets [51] as an additional baseline.
We observed these baseline models to perform very poorly at lower dimensions,
as they were not explicitly trained to learn Matryoshka Representations.

Table 2: 1-NN accuracy (%) on ImageNet-1K for various ResNet50 models.

Rep. Size Rand. FS SVD FF Slimmable MRL MRL–E

8 2.36 19.14 58.93 1.00 62.19 57.45
16 12.06 46.02 66.77 5.12 67.91 67.05
32 32.91 60.78 68.84 16.95 69.46 68.60
64 49.91 67.04 69.41 35.60 70.17 69.61
128 60.91 69.63 69.35 51.16 70.52 70.12
256 65.75 70.67 69.72 60.61 70.62 70.36
512 68.77 71.06 70.18 65.82 70.82 70.74
1024 70.41 71.22 70.34 67.19 70.89 71.07
2048 71.19 71.21 71.19 66.10 70.97 71.21

D.1 Adaptive Classification (MRL–AC)

In an attempt to use the smallest representation that works well for classification
for every image in the ImageNet-1K validation set, we learned a policy to increase
the representation size from mi to mi+1 using a 10K sized subset of the ImageNet-
1K validation set. This policy is based on whether the prediction confidence pi
using representation size mi exceeds a learned threshold t∗i . If pi ≥ t∗i , we used
predictions from representation size mi otherwise, we increased to representation
size mi+1. To learn the optimal threshold t∗i , we performed a grid search between
0 and 1 (100 samples). For each threshold tk, we computed the classification
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Table 3: Threshold-based adaptive classification performance of ResNet50 MRL on
a 40K sized held-out subset of the ImageNet-1K validation set. Results are
averaged over 30 random held-out subsets.

Expected Rep. Size Accuracy

13.43 ± 0.81 73.79 ± 0.10
18.32 ± 1.36 75.25 ± 0.11
25.87 ± 2.41 76.05 ± 0.15
36.26 ± 4.78 76.28 ± 0.16
48.00 ± 8.24 76.43 ± 0.18
64.39 ± 12.55 76.53 ± 0.19
90.22 ± 20.88 76.55 ± 0.20
118.85 ± 33.37 76.56 ± 0.20

accuracy over our 10K image subset. We set t∗i equal to the smallest threshold
tk that gave the best accuracy. We use this procedure to obtain thresholds for
successive models, i.e., {t∗j | j ∈ {8, 16, 32, 64, . . . , 2048}}. To improve reliability
of threshold based greedy policy, we use test time augmentation which has been
used successfully in the past [38].

For inference, we used the remaining held-out 40K samples from the ImageNet-
1K validation set. We began with smallest sized representation (m = 8) and
compared the computed prediction confidence p8 to learned optimal threshold
t∗8. If p8 ≤ t∗8, then we increased m = 16, and repeated this procedure until
m = d = 2048. To compute the expected dimensions, we performed early
stopping at m = {16, 32, 64, . . . 2048} and computed the expectation using the
distribution of representation sizes. As shown in Table 3 and Figure 4, we observed
that in expectation, we only needed a ∼ 37 sized representation to achieve 76.3%
classification accuracy on ImageNet-1K, which was roughly 14× smaller than the
FF–512 baseline. Even if we computed the expectation as a weighted average
over the cumulative sum of representation sizes {8, 24, 56, . . .}, due to the nature
of multiple linear heads for MRL, we ended up with an expected size of 62 that
still provided a roughly 8.2× efficient representation than the FF–512 baseline.
However, MRL–E alleviates this extra compute with a minimal drop in accuracy.

D.2 JFT, ALIGN and BERT

We examine the k-NN classification accuracy of learned Matryoshka Represen-
tations via ALIGN–MRL and JFT-ViT–MRL in Table 4. For ALIGN [19], we
observed that learning Matryoshka Representations via ALIGN–MRL improved
classification accuracy at nearly all dimensions when compared to ALIGN. We
observed a similar trend when training ViT-B/16 [10] for JFT-300M [41] classifica-
tion, where learning Matryoshka Representations via MRL and MRL–E on top
of JFT-ViT improved classification accuracy for nearly all dimensions, and signif-
icantly for lower ones. This demonstrates that training to learn Matryoshka Rep-
resentations is feasible and extendable even for extremely large scale datasets. We
also demonstrate that Matryoshka Representations are learned at interpolated
dimensions for both ALIGN and JFT-ViT, as shown in Table 5, despite not being
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trained explicitly at these dimensions. Lastly, Table 6 shows that MRL training
leads to a increase in the cosine similarity span between positive and random
image-text pairs.

Table 4: ViT-B/16 and ViT-B/16-MRL top-1 and top-5 k-NN accuracy (%) for
ALIGN and JFT. Top-1 entries where MRL–E and MRL outperform baselines
are bolded for both ALIGN and JFT-ViT.

Rep. Size ALIGN ALIGN-MRL JFT-ViT JFT-ViT-MRL JFT-ViT-MRL–E

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

12 11.90 28.05 43.57 67.36 27.07 48.57 53.61 75.30 51.54 73.94
24 33.35 55.58 56.44 78.19 48.64 70.20 62.80 81.51 62.40 81.36
48 51.32 73.15 62.33 82.30 63.58 81.80 67.24 84.37 66.89 83.80
96 61.82 81.97 65.72 84.61 68.56 85.13 69.74 85.86 68.80 85.13
192 66.71 85.27 67.00 85.36 71.32 86.21 71.34 86.62 70.41 86.01
384 67.65 85.70 67.70 85.73 71.67 86.98 71.73 87.08 71.18 86.46
768 68.00 86.10 67.85 85.85 72.10 87.20 71.85 86.92 71.31 86.62

Table 5: Examining top-1 and top-5 k-NN accuracy (%) at interpolated hidden
dimensions for ALIGN and JFT. This indicates that MRL is able to scale
classification accuracy as hidden dimensions increase even at dimensions that
were not explicitly considered during training.

Interpolated
Rep. Size

ALIGN-MRL JFT-ViT-MRL

Top-1 Top-5 Top-1 Top-5

16 49.06 72.26 58.35 78.55
32 58.64 79.96 64.98 82.89
64 63.90 83.39 68.19 84.85
128 66.63 85.00 70.35 86.24
256 67.10 85.30 71.57 86.77
512 67.64 85.72 71.55 86.67

Table 6: Cosine similarity between embeddings
Avg. Cosine Similarity ALIGN ALIGN-MRL

Positive Text to Image 0.27 0.49
Random Text to Image 8e-3 -4e-03
Random Image to Image 0.10 0.08
Random Text to Text 0.22 0.07

We also evaluated the capability of Matryoshka Representations to extend
to other natural language processing via masked language modeling (MLM)
with BERT [9], whose results are tabulated in Table 7. Without any hyper-
parameter tuning, we observed Matryoshka Representations to be within 0.5%
of FF representations for BERT MLM validation accuracy. This is a promising
initial result that could help with large-scale adaptive document retrieval using
BERT–MRL.
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Table 7: Masked Language Modelling (MLM) accuracy(%) of FF and MRL
models on the validation set.

Rep. Size BERT-FF BERT-MRL

12 60.12 59.92
24 62.49 62.05
48 63.85 63.40
96 64.32 64.15
192 64.70 64.58
384 65.03 64.81
768 65.54 65.00

E Image Retrieval

We evaluated the strength of Matryoshka Representations via image retrieval on
ImageNet-1K (the training distribution), as well as on out-of-domain datasets
ImageNetV2 and ImageNet-4K for all MRL ResNet50 models. We generated the
database and query sets, containing N and Q samples respectively, with a standard
PyTorch [32] forward pass on each dataset. We specify the representation size at
which we retrieve a shortlist of k-nearest neighbors (k-NN) by Ds. The database
is a thus a [N , Ds] array, the query set is a [Q, Ds] array, and the neighbors
set is a [Q, k] array. For metrics, we utilized corrected mean average precision

(mAP@k) [24] and precision (P@k): P@k =
correct_pred

k
where correct_pred

is the average number of retrieved NN with the correct label over the entire query
set using a shortlist of length k.

We performed retrieval with FAISS [20], a library for efficient similarity search.
To obtain a shortlist of k-NN, we built an index to search the database. We
performed an exhaustive NN search with the L2 distance metric with faiss.
IndexFlatL2, as well as an approximate NN search (ANNS) via HNSW [20] with
faiss.IndexHNSWFlat. We used HNSW with M = 32 unless otherwise mentioned,
and henceforth referred to as HNSW32. The exact search index was moved to
the GPU for fast k-NN search computation, whereas the HNSW index was kept
on the CPU as it currently lacks GPU support. We show the wall clock times
for building the index as well as the index size in Table 20. We observed exact
search to have a smaller index size which was faster to build when compared to
HNSW, which trades off a larger index footprint for fast NN search (discussed
in more detail in Appendix K). The database and query vectors are normalized
with faiss.normalize_L2 before building the index and performing search.

Retrieval performance on ImageNet-1K, i.e. the training distribution, is shown
in Table 8. MRL outperforms FF models for nearly all representation size for
both top-1 and mAP@10, and especially at low representation size (Ds ≤ 32).
MRL–E loses out to FF significantly only at Ds = 8. This indicates that training
ResNet50 models via the MRL training paradigm improves retrieval at low
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Table 8: Retrieve a shortlist of 200-NN with Ds sized representations on ImageNet-
1K via exact search with L2 distance metric. Top-1 and mAP@10 entries (%)
where MRL–E and MRL outperform FF at their respective representation sizes
are bolded.

Model Ds MFLOPS Top-1 Top-5 Top-10 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

FF

8 10 58.93 75.76 80.25 53.42 52.29 51.84 51.57 59.32 59.28 59.25 59.21
16 20 66.77 80.88 84.40 61.63 60.51 59.98 59.62 66.76 66.58 66.43 66.27
32 41 68.84 82.58 86.14 63.35 62.08 61.36 60.76 68.43 68.13 67.83 67.48
64 82 69.41 83.56 87.33 63.26 61.64 60.63 59.67 68.49 67.91 67.38 66.74
128 164 69.35 84.23 88.24 62.30 60.16 58.73 57.29 67.84 66.83 65.96 64.92
256 328 69.72 84.71 88.54 61.47 58.85 57.02 55.13 67.19 65.82 64.64 63.24
512 656 70.18 85.04 88.91 61.37 58.41 56.26 53.98 67.12 65.49 64.07 62.35
1024 1312 70.34 85.38 89.19 61.13 57.87 55.47 52.90 66.93 65.08 63.43 61.45
2048 2624 71.19 85.66 89.17 62.90 60.06 57.99 55.76 68.46 66.90 65.52 63.83

MRL–E

8 10 57.45 57.68 57.50 51.80 50.41 49.6 48.86 57.50 57.16 56.81 56.36
16 20 67.05 66.94 66.79 61.60 60.36 59.66 59.04 66.79 66.53 66.24 65.87
32 41 68.60 68.74 68.49 63.34 61.97 61.14 60.39 68.49 68.06 67.65 67.17
64 82 69.61 69.28 68.93 63.84 62.33 61.43 60.57 68.93 68.40 67.96 67.38
128 164 70.12 69.60 69.19 64.15 62.58 61.61 60.70 69.19 68.62 68.11 67.50
256 328 70.36 69.83 69.36 64.35 62.76 61.76 60.82 69.36 68.79 68.26 67.63
512 656 70.74 70.09 69.63 64.69 63.05 62.06 61.14 69.63 69.00 68.50 67.88
1024 1312 71.07 70.24 69.78 64.85 63.22 62.19 61.26 69.78 69.16 68.60 67.99
2048 2624 71.21 70.41 69.90 64.99 63.33 62.29 61.33 69.90 69.24 68.68 68.05

MRL

8 10 62.19 77.05 81.34 56.74 55.47 54.76 54.12 62.06 61.81 61.54 61.17
16 20 67.91 81.44 85.00 62.94 61.79 61.16 60.64 67.93 67.71 67.48 67.20
32 41 69.46 83.01 86.30 64.21 62.96 62.22 61.58 69.18 68.87 68.54 68.17
64 82 70.17 83.53 86.95 64.69 63.33 62.53 61.80 69.67 69.25 68.89 68.42
128 164 70.52 83.98 87.25 64.94 63.50 62.63 61.83 69.93 69.44 69.02 68.50
256 328 70.62 84.17 87.38 65.04 63.56 62.66 61.81 70.02 69.52 69.07 68.50
512 656 70.82 84.31 87.55 65.14 63.57 62.62 61.73 70.12 69.53 69.04 68.45
1024 1312 70.89 84.44 87.68 65.16 63.58 62.60 61.68 70.14 69.54 69.01 68.41
2048 2624 70.97 84.41 87.74 65.20 63.57 62.56 61.60 70.18 69.52 68.98 68.35

MRL-
Interpolated

12 15 65.89 80.04 83.68 60.84 59.66 58.98 58.37 65.94 65.72 65.45 65.08
24 31 68.76 82.48 85.87 63.64 62.42 61.74 61.13 68.64 68.35 68.07 67.71
48 61 69.96 83.40 86.65 64.58 63.20 62.42 61.72 69.53 69.10 68.75 68.32
96 123 70.40 83.83 87.04 64.86 63.46 62.62 61.84 69.82 69.38 68.98 68.48
192 246 70.64 84.09 87.37 65.00 63.53 62.66 61.83 69.98 69.49 69.05 68.50
384 492 70.69 84.25 87.41 65.09 63.56 62.64 61.76 70.05 69.51 69.04 68.46
768 984 70.84 84.40 87.63 65.16 63.59 62.62 61.71 70.14 69.55 69.03 68.44
1536 1968 70.88 84.39 87.71 65.18 63.59 62.58 61.64 70.16 69.54 68.99 68.38

representation size over models explicitly trained at those representation size
(FF-8...2048).

We carried out all retrieval experiments at Ds ∈ {8, 16, 32, 64, 128, 256, 512, 1024, 2048},
as these were the representation sizes which were a part of the nesting_list at
which losses were added during training, as seen in Algorithm 1, Appendix A. To
examine whether MRL is able to learn Matryoshka Representations at dimensions
in between the representation size for which it was trained, we also tabulate the
performance of MRL at interpolated Ds ∈ {12, 24, 48, 96, 192, 384, 768, 1536} as
MRL–Interpolated (see Table 8). We observed that performance scaled nearly
monotonically between the original representation size and the interpolated rep-
resentation size as we increase Ds, which demonstrates that MRL is able to
learn Matryoshka Representations at nearly all representation size m ∈ [8, 2048]
despite optimizing only for |M| nested representation sizes.
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Table 9: Retrieve a shortlist of 200-NN with Ds sized representations on Ima-
geNetV2 via exact search with L2 distance metric. Top-1 and mAP@10 entries
(%) where MRL–E outperforms FF are bolded. MRL outperforms FF at all
Ds and is thus not bolded.
Config Ds MFLOPs Top-1 Top-5 Top-10 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

FF

8 10 48.79 64.70 69.72 43.04 41.89 41.42 41.17 48.43 48.27 48.25 48.19
16 20 55.08 69.50 74.08 49.63 48.53 48.06 47.75 54.76 54.64 54.53 54.39
32 41 56.69 71.10 76.47 51.11 49.85 49.17 48.65 56.23 55.96 55.71 55.42
64 82 57.37 72.71 77.48 51.28 49.75 48.85 47.99 56.65 56.14 55.71 55.15
128 164 57.17 73.31 78.64 50.07 48.09 46.79 45.58 55.75 54.89 54.12 53.28
256 328 57.09 74.04 79.24 49.11 46.66 44.99 43.35 55.02 53.77 52.74 51.53
512 656 57.12 73.91 79.32 48.95 46.25 44.37 42.42 54.88 53.49 52.29 50.83
1024 1312 57.53 74.17 79.55 48.27 45.41 43.36 41.26 54.31 52.84 51.49 49.87
2048 2624 57.84 74.59 79.45 49.99 47.47 45.66 43.87 55.89 54.63 53.45 52.12

MRL–E

8 10 47.05 62.53 67.60 40.79 39.47 38.78 38.16 46.03 45.77 45.54 45.17
16 20 55.73 70.54 74.86 49.86 48.57 47.84 47.26 54.97 54.71 54.44 54.10
32 41 57.33 71.61 76.64 51.26 49.92 49.09 48.42 56.46 56.11 55.70 55.30
64 82 57.90 72.55 77.44 51.89 50.29 49.34 48.53 57.06 56.45 55.97 55.43
128 164 57.73 72.79 77.28 52.02 50.38 49.49 48.62 57.13 56.58 56.15 55.58
256 328 58.22 72.77 77.67 52.16 50.61 49.67 48.81 57.30 56.79 56.33 55.77
512 656 58.46 73.00 77.88 52.52 50.97 50.02 49.16 57.65 57.10 56.64 56.08
1024 1312 58.71 73.29 78.00 52.70 51.13 50.17 49.30 57.83 57.26 56.77 56.20
2048 2624 58.86 73.17 78.00 52.88 51.25 50.26 49.36 57.95 57.35 56.85 56.25

MRL

8 10 50.41 65.56 70.27 45.51 44.38 43.71 43.17 50.55 50.44 50.17 49.91
16 20 56.64 70.19 74.61 50.98 49.76 49.16 48.69 55.90 55.66 55.52 55.29
32 41 57.96 71.88 76.41 52.06 50.78 50.09 49.54 57.18 56.83 56.57 56.27
64 82 58.94 72.74 77.17 52.65 51.24 50.44 49.76 57.72 57.29 56.94 56.52
128 164 59.13 73.07 77.49 52.94 51.42 50.53 49.74 58.00 57.47 57.05 56.55
256 328 59.18 73.64 77.75 52.96 51.45 50.52 49.70 58.01 57.53 57.06 56.54
512 656 59.40 73.85 77.97 53.01 51.39 50.46 49.61 58.11 57.49 57.04 56.48
1024 1312 59.11 73.77 77.92 52.98 51.37 50.40 49.54 58.13 57.51 57.00 56.45
2048 2624 59.63 73.84 77.97 52.96 51.34 50.34 49.44 58.07 57.48 56.95 56.36

We examined the robustness of MRL for retrieval on out-of-domain datasets
ImageNetV2 and ImageNet-4K, as shown in Table 9 and Table 10 respectively.
On ImageNetV2, we observed that MRL outperformed FF at all Ds on top-1
Accuracy and mAP@10, and MRL–E outperformed FF at all Ds except Ds = 8.
This demonstrates the robustness of the learned Matryoshka Representations for
out-of-domain image retrieval.

F Adaptive Retrieval

The time complexity of retrieving a shortlist of k-NN often scales as O(d), where
d =Ds, for a fixed k and N . We thus will have a theoretical 256× higher cost
for Ds = 2048 over Ds = 8. We discuss search complexity in more detail in
Appendix I. In an attempt to replicate performance at higher Ds while using
less FLOPs, we perform adaptive retrieval via retrieving a k-NN shortlist with
representation size Ds, and then re-ranking the shortlist with representations of
size Dr. Adaptive retrieval for a shortlist length k = 200 is shown in Table 11 for
ImageNet-1K, and in Table 12 for ImageNet-4K. On ImageNet-1K, we are able to
achieve comparable performance to retrieval with Ds = 2048 (from Table 8) with
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Table 10: Retrieve a shortlist of 200-NN with Ds sized representations on
ImageNet-4K via exact search with L2 distance metric. MRL–E and FF models
are omitted for clarity and compute/inference time costs. All entries are in %.

Config Ds MFLOPs Top-1 Top-5 Top-10 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

MRL

8 34 10.60 26.23 35.57 5.32 4.29 3.76 3.36 9.13 8.77 8.46 8.13
16 67 16.74 36.91 47.28 8.64 6.83 5.84 5.05 13.82 12.79 12.04 13.27
32 134 21.54 43.75 54.11 11.36 8.88 7.47 6.31 17.25 15.67 14.47 13.27
64 269 25.00 47.97 58.25 13.38 10.40 8.67 7.23 19.68 17.64 16.14 14.65
128 538 27.27 50.35 60.47 14.77 11.47 9.53 7.91 21.25 18.95 17.26 15.59
256 1076 28.53 51.95 61.90 15.66 12.19 10.12 8.38 22.28 19.81 18.01 16.22
512 2151 29.46 53.03 62.81 16.29 12.70 10.55 8.72 22.96 20.42 18.54 16.68
1024 4303 30.23 53.72 63.45 16.76 13.08 10.86 8.97 23.48 20.88 18.93 17.00
2048 8606 30.87 54.32 64.02 17.20 13.43 11.14 9.19 23.97 21.28 19.28 17.30

MRL-
Interpolated

12 50 14.04 32.56 42.71 7.16 5.70 4.92 4.32 11.81 11.08 10.52 9.94
24 101 19.49 40.82 51.26 10.17 7.98 6.75 5.75 15.76 14.43 13.42 12.40
48 202 23.51 46.23 56.56 12.49 9.72 8.13 6.81 18.62 16.75 15.39 14.04
96 403 26.25 49.32 59.48 14.15 11.00 9.15 7.61 20.55 18.36 16.78 15.17
192 807 27.94 51.32 61.32 15.29 11.89 9.88 8.18 21.86 19.46 17.71 15.96
384 1614 29.03 52.53 62.45 15.99 12.46 10.35 8.56 22.64 20.14 18.29 16.47
768 3227 29.87 53.36 63.13 16.54 12.90 10.71 8.85 23.23 20.67 18.75 16.85
1536 6454 30.52 54.02 63.79 16.99 13.27 11.01 9.08 23.73 21.09 19.12 17.16

128x	theoretical	speed-up
14x	real-world	speed-up

8
16
32
64
128
256
512
1024
2048

Ds Dr 6x	real-world	speed-up
32x	theoretical	speed-up

(a) ImageNet-1K (b) ImageNet-4K

Fig. 6: The trade-off between mAP@10 vs MFLOPs/Query for Adaptive Retrieval
(AR) on ImageNet-1K (left) and ImageNet-4K (right). Every combination of Ds

& Dr falls above the Pareto line (orange dots) of single-shot retrieval with a fixed
representation size while having configurations that are as accurate while being
up to 14× faster in real-world deployment. Funnel retrieval is almost as accurate
as the baseline while alleviating some of the parameter choices of Adaptive
Retrieval.

Ds = 16 at 128× less MFLOPs/Query (used interchangeably with MFLOPs).
Similarly, on ImageNet-4K, we are able to achieve comparable performance to
retrieval with Ds = 2048 (from Table 10) with Ds = 64 on ImageNet-1K and
ImageNet-4K, at 32× less MFLOPs. This demonstrates the value of intelligent
routing techniques which utilize appropriately sized Matryoshka Representations
for retrieval.

Figure 6 showcases the compute-vs-accuracy trade-off for adaptive retrieval
using Matryoshka Representations compared to single-shot using fixed features
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with ResNet50 on ImageNet-1K. We observe that all AR settings lie above
the Pareto frontier of the single-shot retrieval with varying representation sizes.
In particular for ImageNet-1K, we show that the AR model with Ds = 16 &
Dr = 2048 is as accurate as single-shot retrieval with d = 2048 while being
∼ 128× more efficient in theory and ∼ 14× faster in practice (compared using
HNSW on the same hardware). We show similar trends with ImageNet-4K, but
note that we require Ds = 64 given the increased difficulty of the dataset. This
results in ∼ 32× and ∼ 6× theoretical and in practice speedups respectively.
Lastly, while K = 200 works well for our adaptive retrieval experiments, we ablate
over the shortlist size, k in Appendix K.2 to find that the accuracy gains stop
after a point further strengthening the use-case for Matryoshka Representation
Learning and adaptive retrieval.

Funnel Retrieval. We also designed a simple cascade policy which we call funnel
retrieval to successively improve and thin out the k-NN shortlist at increasing
Ds. This was an attempt to remove the dependence on manual choice of Ds &Dr.
We retrieved a shortlist at Dsand then re-ranked the shortlist five times while
simultaneously increasing Dr (rerank cascade) and decreasing the shortlist length
(shortlist cascade), which resembles a funnel structure. We tabulate the perfor-
mance of funnel retrieval in various configurations in Table 13 on ImageNet-1K,
and in Table 14 on ImageNet-4K. With funnel retrieval on ImageNet-1K, we were
able to achieve top-1 accuracy within 0.1% of retrieval with Ds = 2048 (as in
Table 8) with a funnel with Ds = 16, with 128× less MFLOPs. Similarly, we are
able to achieve equivalent top-1 accuracy within 0.15% of retrieval at Ds = 2048
(as in Table 10) with funnel retrieval at Ds = 32 on ImageNet-4K, with 64× less
MFLOPs. This demonstrates that with funnel retrieval, Matryoshka Represen-
tation is as accurate as the single-shot 2048-dim retrieval while being ∼ 128×
more efficient theoretically. All these results showcase the potential of MRL and
AR for large-scale multi-stage search systems [7].
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Table 11: Retrieve a shortlist of k-NN with Ds sized representations on ImageNet-
1K with MRL representations, and then re-order the neighbors shortlist with
L2 distances using Dr sized representations. Top-1 and mAP@10 entries (%)
that are within 0.1% of the maximum value achievable without reranking on
MRL representations, as seen in Table 8, are bolded.
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Ds Dr MFLOPs Top-1 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

8

16

10

68.21 63.35 62.25 61.70 61.19 68.32 68.14 67.96 67.65
32 69.42 64.12 62.81 62.03 61.32 69.04 68.63 68.22 67.71
64 70.05 64.46 63.03 62.14 61.29 69.37 68.83 68.32 67.66
128 70.34 64.68 63.16 62.21 61.27 69.59 68.96 68.38 67.65
256 70.40 64.77 63.21 62.23 61.26 69.66 69.02 68.41 67.65
512 70.60 64.86 63.22 62.21 61.22 69.74 69.02 68.39 67.62

1024 70.71 64.88 63.23 62.20 61.20 69.76 69.01 68.39 67.60
2048 70.81 64.90 63.22 62.17 61.16 69.77 68.99 68.36 67.57

16

32

21

69.47 64.27 63.04 62.36 61.75 69.21 68.90 68.58 68.12
64 70.16 64.74 63.42 62.66 61.94 69.66 69.22 68.81 68.22
128 70.52 65.00 63.60 62.77 61.98 69.91 69.36 68.89 68.24
256 70.55 65.10 63.67 62.82 62.01 69.98 69.43 68.92 68.25
512 70.74 65.21 63.70 62.83 62.00 70.08 69.43 68.92 68.24

1024 70.83 65.23 63.72 62.83 61.99 70.08 69.45 68.92 68.23
2048 70.90 65.27 63.73 62.82 61.97 70.10 69.44 68.90 68.21

32

64

41

70.16 64.69 63.35 62.57 61.93 69.68 69.26 68.92 68.51
128 70.52 64.97 63.54 62.73 62.04 69.95 69.47 69.06 68.59
256 70.63 65.07 63.63 62.79 62.07 70.04 69.55 69.12 68.61
512 70.82 65.17 63.66 62.80 62.06 70.11 69.57 69.12 68.60

1024 70.89 65.20 63.68 62.80 62.04 70.15 69.59 69.12 68.59
2048 70.97 65.24 63.70 62.79 62.02 70.19 69.59 69.10 68.56

64

128

82

70.51 64.94 63.50 62.64 61.88 69.94 69.44 69.02 68.54
256 70.63 65.04 63.57 62.69 61.91 70.02 69.52 69.08 68.57
512 70.83 65.14 63.59 62.67 61.87 70.12 69.54 69.06 68.54

1024 70.89 65.16 63.59 62.65 61.85 70.15 69.54 69.05 68.52
2048 70.97 65.20 63.59 62.63 61.82 70.18 69.53 69.03 68.49

128

256

164

70.63 65.04 63.56 62.66 61.82 70.02 69.52 69.07 68.51
512 70.82 65.14 63.58 62.63 61.77 70.11 69.54 69.04 68.47

1024 70.89 65.16 63.58 62.60 61.73 70.14 69.54 69.02 68.45
2048 70.97 65.20 63.57 62.57 61.68 70.18 69.52 68.99 68.41

256
512

328
70.82 65.14 63.57 62.62 61.74 70.12 69.53 69.04 68.45

1024 70.88 65.16 63.58 62.60 61.69 70.14 69.54 69.01 68.41
2048 70.97 65.20 63.56 62.56 61.62 70.18 69.52 68.98 68.37

512 1024 656 70.90 65.16 63.58 62.60 61.68 70.14 69.54 69.01 68.41
2048 70.98 65.20 63.57 62.56 61.60 70.18 69.52 68.98 68.35

1024 2048 1312 70.97 65.20 63.57 62.56 61.60 70.18 69.52 68.98 68.35

G Few-shot and Sample Efficiency

We compare MRL, MRL–E, and FF on various benchmarks to observe the effect
of representation size on sample efficiency. We use Nearest Class Means [35] for
classification which has been shown to be effective in the few-shot regime [6].

ImageNetV2. Representations are evaluated on ImageNetV2 with the n-shot k-
way setup. ImageNetV2 is a dataset traditionally used to evaluate the robustness
of models to natural distribution shifts. For our experiments we evaluate accuracy
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Table 12: Retrieve a shortlist of k-NN with Ds sized representations on ImageNet-
4K with MRL representations, and then re-order the neighbors shortlist with L2 distances
using Dr sized representations. Top-1 and mAP@10 entries (%) that are within 0.1% of
the maximum value achievable without reranking on MRL representations, as seen in
Table 10, are bolded.
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Ds Dr MFLOPs Top-1 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

8

16

34

16.84 8.70 6.88 5.88 5.08 13.86 12.80 11.98 11.10
32 20.73 10.66 8.19 6.77 5.61 16.18 14.39 13.02 11.61
64 23.11 11.91 9.03 7.36 6.00 17.56 15.34 13.67 11.99
128 24.63 12.71 9.59 7.76 6.25 18.42 15.94 14.08 12.22
256 25.5 13.24 9.96 8.03 6.42 19.00 16.35 14.36 12.37
512 26.07 13.59 10.21 8.20 6.53 19.37 16.62 14.54 12.46

1024 26.52 13.85 10.40 8.34 6.61 19.65 16.80 14.68 12.53
2048 26.94 14.11 10.57 8.45 6.68 19.92 16.98 14.79 12.58

16

32

67

21.44 11.24 8.72 7.26 6.02 17.02 15.30 13.92 12.41
64 24.36 12.78 9.75 7.96 6.43 18.72 16.41 14.63 12.74
128 26.08 13.70 10.39 8.39 6.69 19.68 17.07 15.05 12.94
256 26.99 14.27 10.79 8.67 6.85 20.27 17.48 15.31 13.07
512 27.60 14.66 11.06 8.86 6.97 20.67 17.75 15.50 13.16

1024 28.12 14.94 11.26 8.99 7.05 20.96 17.95 15.62 13.22
2048 28.56 15.21 11.43 9.11 7.12 21.23 18.13 15.73 13.27

32

64

134

24.99 13.35 10.35 8.59 7.09 19.61 17.52 15.92 14.21
128 27.17 14.61 11.27 9.26 7.51 20.99 18.52 16.62 14.59
256 28.33 15.37 11.83 9.67 7.77 21.80 19.12 17.05 14.81
512 29.12 15.88 12.20 9.94 7.93 22.33 19.51 17.32 14.94

1024 29.78 16.25 12.47 10.13 8.05 22.71 19.79 17.5 15.03
2048 30.33 16.59 12.72 10.30 8.16 23.07 20.05 17.66 15.11

64

128

269

27.27 14.76 11.47 9.51 7.85 21.25 18.92 17.20 15.40
256 28.54 15.64 12.15 10.05 8.21 22.24 19.71 17.81 15.76
512 29.45 16.25 12.62 10.40 8.44 22.88 20.24 18.20 15.97

1024 30.19 16.69 12.96 10.66 8.60 23.35 20.61 18.46 16.10
2048 30.81 17.10 13.27 10.88 8.74 23.79 20.93 18.69 16.21

128

256

538

28.54 15.66 12.19 10.12 8.36 22.28 19.81 18.00 16.16
512 29.45 16.29 12.69 10.53 8.66 22.96 20.41 18.50 16.48

1024 30.22 16.76 13.07 10.83 8.86 23.47 20.84 18.83 16.68
2048 30.86 17.19 13.41 11.09 9.03 23.95 21.22 19.12 16.84

256
512

1076
29.45 16.29 12.70 10.55 8.71 22.97 20.42 18.54 16.66

1024 30.21 16.76 13.08 10.86 8.95 23.48 20.87 18.92 16.94
2048 30.85 17.20 13.43 11.14 9.15 23.97 21.27 19.26 17.16

512 1024 2152 30.22 16.76 13.08 10.86 8.97 23.48 20.88 18.93 17.00
2048 30.87 17.20 13.43 11.14 9.19 23.97 21.28 19.28 17.28

1024 2048 4303 30.87 17.20 13.43 11.15 9.19 23.97 21.28 19.28 17.29

of the model given n examples from the ImageNetV2 distribution. We benchmark
representations in the traditional small-scale (10-way) and large-scale (1000-way)
setting. We evaluate for n ∈ 1, 3, 5, 7, 9 with 9 being the maximum value for n
because there are 10 images per class.

We observe that MRL has equal performance to FF across all representation
sizes and shot numbers. We also find that for both MRL and FF as the shot
number decreases, the required representation size to reach optimal accuracy
decreases (Table 15). For example, we observe that 1-shot performance at 32
representation size has equal accuracy to 2048 representation size.
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Table 13: Retrieve a shortlist of k-NN with Ds sized representations on ImageNet-
1K with MRL. This shortlist is then reranked with funnel retrieval, which uses
a rerank cascade with a one-to-one mapping with a monotonically decreasing
shortlist length as shown in the shortlist cascade. Top-1 and mAP@10 entries
(%) within 0.1% of the maximum achievable without reranking on MRL repre-
sentations, as seen in Table 8, are bolded.
Ds Rerank Cascade Shortlist Cascade MFLOPs Top-1 Top-5 Top-10 mAP@10 P@10

8 16→32→64→128→2048
200→100→50→25→10 10.28 70.22 82.63 85.49 64.06 68.65
400→200→50→25→10 10.29 70.46 83.13 86.08 64.43 69.10

800→400→200→50→10 10.31 70.58 83.54 86.53 64.62 69.37

16 32→64→128→256→2048
200→100→50→25→10 20.54 70.90 83.96 86.85 65.19 69.97
400→200→50→25→10 20.56 70.95 84.05 87.04 65.18 70.00

800→400→200→50→10 20.61 70.96 84.18 87.22 65.14 70.01

32 64→128→256→512→2048
200→100→50→25→10 41.07 70.96 84.32 87.47 65.21 70.11
400→200→50→25→10 41.09 70.97 84.32 87.47 65.19 70.11

800→400→200→50→10 41.20 70.97 84.36 87.53 65.18 70.11

FLUID. For the long-tailed setting we evaluate MRL on the FLUID bench-
mark [46] which contains a mixture of pretrain and new classes. Table 16 shows
the evaluation of the learned representation on FLUID. We observe that MRL
provides up to 2% higher accuracy on novel classes in the tail of the distribution,
without sacrificing accuracy on other classes. Additionally we find the accuracy
between low-dimensional and high-dimensional representations is marginal for
pretrain classes. For example, the 64-dimensional MRL performs ∼ 1% lower in
accuracy compared to the 2048-dimensional counterpart on pretrain-head classes
(84.46% vs 85.60%). However for novel-tail classes the gap is far larger (6.22% vs
12.88%). We hypothesize that the higher-dimensional representations are required
to differentiate the classes when few training examples of each are known. This
results provides further evidence that different tasks require varying capacity
based on their difficulty.

H Robustness Experiments

We evaluate the robustness of MRL models on out-of-domain datasets (Ima-
geNetV2/R/A/Sketch) and compare them to the FF baseline. Each of these
datasets is described in Appendix B. The results in Table 17 demonstrate that
learning Matryoshka Representations does not hurt out-of-domain generalization
relative to FF models, and Matryoshka Representations in fact improve the
performance on ImageNet-A. For a ALIGN–MRL model, we examine the the
robustness via zero-shot retrieval on out-of-domain datasets, including ObjectNet,
in Table 18.
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Table 14: Retrieve a shortlist of k-NN with Ds sized representations on ImageNet-
4K with MRL. This shortlist is then reranked with funnel retrieval, which uses
a rerank cascade with a one-to-one mapping with a monotonically decreasing
shortlist length as shown in the shortlist cascade. Top-1 and mAP@10 entries
(%) within 0.15% of the maximum achievable without reranking on MRL repre-
sentations, as seen in Table 10, are bolded.
Ds Rerank Cascade Shortlist Cascade MFLOPs Top-1 Top-5 Top-10 mAP@10 P@10

8 16→32→64→128→2048
200→100→50→25→10 33.65 26.20 46.45 54.12 12.79 17.85
400→200→50→25→10 33.66 26.55 47.02 54.72 13.02 18.15

800→400→200→50→10 33.68 26.83 47.54 55.35 13.24 18.44

16 32→64→128→256→2048
200→100→50→25→10 67.28 29.51 51.44 59.56 15.27 21.03
400→200→50→25→10 67.29 29.66 51.71 59.88 15.42 21.22

800→400→200→50→10 67.34 29.79 52.00 60.25 15.55 21.41

32 64→128→256→512→2048
200→100→50→25→10 134.54 30.64 53.52 62.16 16.45 22.64
400→200→50→25→10 134.56 30.69 53.65 62.31 16.51 22.73

800→400→200→50→10 134.66 30.72 53.78 62.43 16.55 22.79

64 128→256→512→1024→2048
200→100→50→25→10 269.05 30.81 54.06 63.15 16.87 23.34
400→200→50→25→10 269.10 30.84 54.20 63.31 16.92 23.42

800→400→200→50→10 269.31 30.87 54.27 63.42 16.95 23.46

I In Practice Costs

All approximate NN search experiments via HNSW32 were run on an Intel Xeon
2.20GHz CPU with 24 cores. All exact search experiments were run with CUDA
11.0 on 2xA100-SXM4 NVIDIA GPUs with 40G RAM each.

MRL models. As MRL makes minimal modifications to the ResNet50 model in
the final fc layer via multiple heads for representations at various scales, it has
only an 8MB storage overhead when compared to a standard ResNet50 model.
MRL–E has no storage overhead as it has a shared head for logits at the final fc
layer.

Retrieval Exact search has a search time complexity of O(dkN), and HNSW
has a search time complexity of O(dk log(N)), where N is the database size, d
is the representation size, and k is the shortlist length. To examine real-world
performance, we tabulate wall clock search time for every query in the ImageNet-
1K and ImageNet-4K validation sets over all representation sizes d in Table 19 for
both Exact Search and HNSW32, and ablate wall clock query time over shortlist
length k on the ImageNet-1K validation set in Table 21. The wall clock time to
build the index and the index size is also shown in Table 20.

J Analysis of Model Disagreement

Class Trends Does increasing representation size necessarily help improve classi-
fication performance across all classes in ImageNet-1K? We studied this question
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Table 15: Few-shot accuracy (%) on ImageNetV2 for 1000-way classification.
MRL performs equally to FFacross all shots and representation sizes. We also
observe that accuracy saturates at a lower dimension for lower shot numbers.
Eg., for 1-shot, 32-dim performs comparably to 2048-dim.

Rep. Size Method 1-Shot 3-Shot 5-Shot 7-Shot 9-Shot

8 FF 35.41 45.73 49.23 50.89 51.72
MRL 35.37 45.69 49.25 50.85 51.73

16 FF 40.88 53.96 57.36 58.72 59.39
MRL 40.90 53.94 57.37 58.65 59.29

32 FF 41.41 54.88 58.28 59.63 60.40
MRL 41.40 54.91 58.30 59.65 60.45

64 FF 41.25 54.83 58.29 59.82 60.61
MRL 41.28 54.80 58.32 59.77 60.69

128 FF 41.36 54.90 58.50 60.05 60.90
MRL 41.38 54.95 58.50 60.06 60.83

256 FF 41.36 54.90 58.50 60.05 60.90
MRL 41.38 54.95 58.50 60.06 60.83

512 FF 41.36 55.05 58.70 60.19 61.02
MRL 41.34 55.14 58.78 60.40 61.18

1024 FF 41.32 55.20 58.85 60.46 61.38
MRL 41.31 55.24 58.86 60.42 61.34

2048 FF 41.18 55.09 58.77 60.38 61.34
MRL 41.16 55.10 58.77 60.40 61.28

by examining trends in performance with increasing representation size from
d = 8, ...2048. For MRL models, we observed that 244 classes showed a monotonic
improvement in performance with increasing d, 177 classes first improved but then
observed a slight dip (one or two misclassifications per class), 49 classes showed
a decline first and then an improvement, and the remaining classes did not show
a clear trend. When we repeated this experiment with independently trained
FF models, we noticed that 950 classes did not show a clear trend. This motivated
us to leverage the disagreement as well as gradual improvement of accuracy at
different representation sizes by training Matryoshka Representations. Figure 7
showcases the progression of relative per-class accuracy distribution compared
to the Matryoshka Representation Learning-2048 dimensional model. This also
showed that some instances and classes could benefit from lower-dimensional
representations.

Discussion of Oracle Accuracy Based on our observed model disagreements for
different representation sizes d, we defined an optimal oracle accuracy [27] for
MRL. We labeled an image as correctly predicted if classification using any
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representation size was correct. The percentage of total samples of ImageNet-1K
that were firstly correctly predicted using each representation size d is shown
in Table 22. This defined an upper bound on the performance of MRL models,
as 18.46% of the ImageNet-1K validation set were incorrectly predicted ∀d ∈
{8, 16, . . . , 2048}. We show the oracle performance on MRL models for ImageNet-
1K/V2/A/R/Sketch datasets in Table 23.

Fig. 7: Progression of relative per-class accuracy vs MRL-2048. As the dimension-
ality increases, the spread shrinks while the class marked (x) (Madagascar cat)
loses accuracy.

In an attempt to derive an optimal routing policy to emulate oracle accuracy,
we designed the adaptive classification via cascading method as discussed in Ap-
pendix D.1. This led to an interesting observation on the expected dimensionality
for 76.30% top-1 classification accuracy being just d ∼ 37. We leave the design
and learning of a more optimal policy for future work.

Grad-CAM Examples We analyzed the nature of model disagreement across
representation sizes with MRL models with the help of Grad-CAM visualiza-
tion [36]. We observed there were certain classes in ImageNet-1K such as "tools",
"vegetables" and "meat cutting knife" which are occasionally located around
multiple objects and a cluttered environment. In such scenarios, we observed
that smaller representation size models would often get confused due to other
objects and fail to extract the object of interest which generated the correct label.
We also observed a different nature of disagreement arising when the models got
confused within the same superclass. For example, ImageNet-1K has multiple
"snake" classes, and models often confuse a snake image for an incorrect species
of snake.

Superclass Performance We created a 30 superclass subset of the validation set
based on wordnet hierarchy (Table 24) to quantify the performance of MRL
model on ImageNet-1K superclasses. These 30 superclasses contain 467 out of
1000 classes, with an additional class “reject", when an image does not belong to
any sueprclass. Table 25 quantifies the performance with different representation
size. We observed that there was a jump in performance from 8 to 16 sized
representations because predictions using first 8 dimensions was confusing images
from the superclass "vegetable" with the reject token. We show 8 of these 30
superclasses and plot their top-1 accuracy (%) improvement with rep. size in
Figure 9.
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(a
)

(b
)

Fig. 8: Grad-CAM [36] progression of predictions in MRL model across
8, 16, 32, 2048 dimensions. (a) 8-dimensional representation confuses due to pres-
ence of other relevant objects (with a larger field of view) in the scene and predicts
“shower cap” & (b) 8-dim model confuses within the same super-class of “boa”;
thus failing gracefully in both these scenarios.
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Fig. 9: Improvement of within-superclass classification with increasing representa-
tion size for several selected supervlasses. We observe that superclasses such as
“oscine (songbird)” have a clear distinction between the object and background
and thus predictions using representation size of 8 also lead to a good perfor-
mance.
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K Ablation Studies

K.1 MRL Training Paradigm

Nesting as Finetuning. To observe if nesting can be induced in models that were
not explicitly trained with nesting from scratch, we loaded a pretrained FF-2048
ResNet50 model and initialized a new MRL layer, as defined in Algorithm 2,
Appendix C. We then unfroze different layers of the backbone to observe how
much non-linearity in the form of unfrozen conv layers needed to be present to
enforce nesting into a pretrained FF model. A description of these layers can
be found in the ResNet50 architecture [13]. All models were finetuned with the
FFCV pipeline, with same training configuration as in the end-to-end training
aside from changing lr = 0.1 and epochs = 10. We observed that finetuning the
linear layer alone was insufficient to learn Matryoshka Representations at lower
dimensionalities. Adding more and more non-linear conv+ReLU layers steadily
improved classification accuracy of d = 8 from 5% to 60% after finetuning, which
was only 6% less than training MRL end-to-end for 40 epochs. This difference
was successively less pronounced as we increased dimensionality past d = 64, to
within 1.5% for all larger dimensionalities. The full results of this ablation can
be seen in Table 26.

Relative Importance. We performed an ablation of MRL over the relative im-
portance, cm, of different nesting dimensions m ∈ M, as defined in Sec. 2. In
an attempt to improve performance at lower dimensionalities, we boosted the
relative importance cm of training loss at lower dimensions as in Eq. 1 with
two models, MRL-8boost and MRL-8+16boost. The MRL-8boost model had
cm∈M = [2, 1, 1, 1, 1, 1, 1, 1, 1] and the MRL-8+16boost model had cm∈M =
[2, 1.5, 1, 1, 1, 1, 1, 1, 1]. The relative importance list cm∈M had a 1-to-1 correspon-
dence with nesting dimension set M. In Table 27, we observed that MRL-8boost
improves top-1 accuracy by 3% at d = 8, and also improves top-1 of all represen-
tation scales from 16 to 256 over MRL, while only hurting the performance at
512 to 2048 representation scales by a maximum of 0.1%. This suggests that the
relative importance cm can be tuned/set for optimal accuracy for all m ∈ M,
but we leave this extension for future work.

K.2 Retrieval

Adaptive Retrieval. To examine the effect of increasing shortlist lengths on search
time, a reranking ablation over shortlist lengths is also performed for Ds= 16 and
Dr= 2048 over ImageNet-1K in Table 28, and over ImageNet-4K in Table 29. We
observed that using a larger shortlist k saturated ImageNet-1K performance at
k=200. But using larger shortlists until k = 2048, the maximum value supported
by the FAISS framework, steadily improved performance on ImageNet-4K. This
is likely due to the increased database size, but could also indicate a correlation
with ImageNet-4K being slightly out-of-distribution making the task at hand
harder.
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Table 16: Accuracy (%) categories indicates whether classes were present during
ImageNet pretraining and head/tail indicates classes that have greater/less than
50 examples in the streaming test set. We observe that MRL performs better
than the baseline on novel tail classes by ∼ 2% on average.

Rep. Size Method Pretrain
- Head (>50)

Novel
- Head (>50)

Pretrain
- Tail (<50)

Novel
- Tail (<50)

Mean Per Class
Acc. Acc.

8
FF 68.04 11.30 33.18 0.36 16.29 28.47
MRL 71.75 10.70 38.29 0.19 17.15 29.34

MRL–E 57.40 6.25 23.14 0.04 11.78 22.81

16
FF 80.74 19.12 63.29 2.78 25.65 37.61
MRL 81.79 17.90 61.39 1.95 24.73 37.59

MRL–E 79.08 9.15 60.33 0.08 20.45 30.24

32
FF 83.67 24.30 66.66 4.23 28.86 42.40
MRL 83.46 23.26 65.82 3.75 28.16 41.90

MRL–E 81.42 10.47 68.01 0.23 22.31 32.17

64
FF 84.12 27.49 68.20 5.17 30.64 45.18
MRL 84.46 27.61 67.59 6.22 31.03 45.35

MRL–E 82.57 13.23 70.18 0.52 23.83 34.74

128
FF 84.87 29.96 68.79 5.54 31.84 47.06
MRL 84.88 30.86 68.58 8.41 33.23 47.79

MRL–E 82.76 18.93 64.46 2.22 25.75 39.19

256
FF 84.77 32.78 69.96 7.21 33.65 49.15
MRL 85.10 32.91 69.39 9.99 34.74 49.39

MRL–E 82.96 22.63 64.55 3.59 27.64 41.96

512
FF 85.62 35.27 70.27 9.05 35.42 51.14
MRL 85.62 34.67 70.24 11.43 36.11 50.79

MRL–E 82.86 25.62 64.34 4.99 29.22 44.20

1024
FF 86.30 37.49 71.12 10.92 37.14 52.88
MRL 85.64 35.88 70.02 12.19 36.80 51.58

MRL–E 83.03 27.78 64.58 6.32 30.57 45.71

2048
FF 86.40 37.09 71.74 10.77 37.04 52.67
MRL 85.60 36.83 70.34 12.88 37.46 52.18

MRL–E 83.01 29.99 65.37 7.60 31.97 47.16



1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

ECCV
#3

ECCV
#3

34 ECCV-22 submission ID 3

Table 17: Top-1 classification accuracy (%) on out-of-domain datasets (ImageNet-
V2/R/A/Sketch) to examine robustness of Matryoshka Representation Learning.
Note that these results are without any fine tuning on these datasets.

ImageNet-V1 ImageNet-V2 ImageNet-R ImageNet-A ImageNet-Sketch

Rep. Size FF MRL–E MRL FF MRL–E MRL FF MRL–E MRL FF MRL–E MRL FF MRL–E MRL

8 65.86 56.92 67.46 54.05 47.40 55.59 24.60 22.98 23.57 2.92 3.63 3.39 17.73 15.07 17.98
16 73.10 72.38 73.80 60.52 60.48 61.71 28.51 28.45 28.85 3.00 3.55 3.59 21.70 20.38 21.77
32 74.68 74.80 75.26 62.24 62.23 63.05 31.28 30.79 31.47 2.60 3.65 3.57 22.03 21.87 22.48
64 75.45 75.48 76.17 63.51 63.15 63.99 32.96 32.13 33.39 2.87 3.99 3.76 22.13 22.56 23.43
128 75.47 76.05 76.46 63.67 63.52 64.69 33.93 33.48 34.54 2.81 3.71 3.73 22.73 22.73 23.70
256 75.78 76.31 76.66 64.13 63.80 64.71 34.80 33.91 34.85 2.77 3.65 3.60 22.63 22.88 23.59
512 76.30 76.48 76.82 64.11 64.09 64.78 35.53 34.20 34.97 2.37 3.57 3.59 23.41 22.89 23.67
1024 76.74 76.60 76.93 64.43 64.20 64.95 36.06 34.22 34.99 2.53 3.56 3.68 23.44 22.98 23.72
2048 77.10 76.65 76.95 64.69 64.17 64.93 37.10 34.29 35.07 2.93 3.49 3.59 24.05 23.01 23.70

Table 18: Zero-shot top-1 image classification accuracy (%) of a ALIGN-MRL
model on ImageNet-V1/V2/R/A and ObjectNet.

Rep. Size V1 V2 A R ObjectNet

12 30.57 23.98 14.59 24.24 25.52
24 45.64 37.71 22.75 46.40 35.89
48 53.84 46.16 28.88 60.71 42.76
96 58.31 51.34 33.21 70.12 45.20
192 60.95 53.56 36.10 74.41 48.24
384 62.06 54.77 37.95 76.51 49.10
768 62.26 55.15 37.84 76.73 49.26

Baseline 66.39 59.57 39.97 80.49 51.60

Table 19: Retrieval k-NN wall clock search times (s) over the entire validation
(query) set of ImageNet-1K and ImageNet-4K, containing 50K and 200K samples
respectively.

Rep. Size ImageNet-1K ImageNet-4K

ExactL2 HNSW32 ExactL2 HNSW32

8 0.60 0.14 35.70 1.17
16 0.57 0.18 36.16 1.65
32 0.60 0.20 36.77 1.75
64 0.66 0.24 27.88 2.21
128 0.86 0.32 30.10 4.15
256 1.29 0.46 34.97 3.39
512 2.17 0.68 46.97 4.83
1024 3.89 1.05 70.59 7.14
2048 7.31 2.05 117.78 13.43
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Table 20: FAISS [20] index size and build times for exact k-NN search with L2
Distance metric and approximate k-NN search with HNSW32 [30].

Rep. Size

Exact Search HNSW32

ImageNet-1K ImageNet-4K ImageNet-1K ImageNet-4K

Index Size
(MB)

Index Build
Time (s)

Index Size
(MB)

Index Build
Time (s)

Index Size
(MB)

Index Build
Time (s)

Index Size
(MB)

Index Build
Time (s)

8 40 0.04 131 0.33 381 4.87 1248 24.04
16 80 0.08 263 0.27 421 6.15 1379 33.31
32 160 0.16 525 0.52 501 6.80 1642 37.41
64 320 0.38 1051 1.05 661 8.31 2167 47.23
128 641 0.64 2101 2.10 981 11.73 3218 89.87
256 1281 1.27 4202 4.20 1622 17.70 5319 102.84
512 2562 2.52 8404 8.39 2903 27.95 9521 158.47
1024 5125 5.10 16808 17.20 5465 44.02 17925 236.30
2048 10249 10.36 33616 41.05 10590 86.15 34733 468.18

Table 21: Retrieval k-NN wall clock search times (s) over entire validation (query)
set of ImageNet-1K over various shortlist lengths k.

Index k = 50 k = 100 k = 200 k = 500 k = 1000 k = 2048

Exact L2 0.4406 0.4605 0.5736 0.6060 1.2781 2.7047
HNSW32 0.1193 0.1455 0.1833 0.2145 0.2333 0.2670

Table 22: Percentage of ImageNet-1K validation set that is first correctly predicted
using each representation size d. We note that 18.46% of the samples cannot be
correctly predicted by any representation size. The remaining 81.54% constitutes
the oracle accuracy.

Rep. Size 8 16 32 64 128 256 512 1024 2048 Always
Wrong

Correctly
Predicted 67.46 8.78 2.58 1.35 0.64 0.31 0.20 0.12 0.06 18.46

Table 23: Oracle classification accuracy of various evaluation datasets for
ResNet50–MRL model trained on ImageNet-1K.

Top-1 ImageNetV1 ImageNetV2 ImageNet-A ImageNet-R ImageNet-Sketch

FF–2048 76.9 64.9 3.6 35.1 23.7
MRL–Oracle 81.5 70.6 8.7 39.8 28.9
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Table 24: 30 Superclasses in ImageNet-1K corresponding to the performance in
Table 25.

insect motor vehicle artiodactyl vegetable game equipment
terrier serpent machine measuring device sheepdog

protective covering sporting dog vessel, watercraft building lizard
garment hound monkey home appliance wind instrument
vessel fish nourishment electronic equipment oscine

furniture wading bird tool canine mechanism

Table 25: Performance of MRL model on 31-way classification (1 extra class is
for reject token) on ImageNet-1K superclasses.

Rep. Size 8 16 32 64 128 256 512 1024 2048

MRL 85.57 88.67 89.48 89.82 89.97 90.11 90.18 90.22 90.21

Table 26: Top-1 classification accuracy (%) on ImageNet-1K of various ResNet50
models which are finetuned on pretrained FF-2048 model. We observed that
adding more and more non-linearities is able to induce nesting to a reasonable
extent even if the model was not pretrained with nesting in mind.

Rep. Size fc 4.2 conv3,
fc

4.2 conv2,
conv3, fc

4.2 full,
fc All (MRL)

8 5.15 36.11 54.78 60.02 66.63
16 13.79 58.42 67.26 70.10 73.53
32 32.52 67.81 71.62 72.84 75.03
64 52.66 72.42 73.61 74.29 75.82
128 64.60 74.41 74.67 75.03 76.30
256 69.29 75.30 75.23 75.38 76.47
512 70.51 75.96 75.47 75.64 76.65
1024 70.19 76.18 75.70 75.75 76.76
2048 69.72 76.44 75.96 75.97 76.80
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Table 27: An ablation over boosting training loss at lower nesting dimensions,
with top-1 and top-5 accuracy (%). The models are described in Appendix K.1.

Model MRL MRL-8boost MRL-8+16boost

Rep. Size Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

8 66.63 84.66 69.53 86.19 69.24 85.96
16 73.53 89.52 73.86 89.44 73.91 89.55
32 75.03 91.31 75.28 91.21 75.10 91.14
64 75.82 92.27 75.84 92.22 75.67 92.06
128 76.30 92.82 76.28 92.74 76.07 92.52
256 76.47 93.02 76.48 92.97 76.22 92.72
512 76.65 93.13 76.56 93.09 76.35 92.85
1024 76.76 93.22 76.71 93.21 76.39 92.98
2048 76.80 93.32 76.76 93.28 76.52 93.05

Table 28: Adaptive retrieval ablation over shortlist length k for Ds = 16, Dr =
2048 on ImageNet-1K with exact search. Entries with the highest P@1 and
mAP@10 across all k are in bold.

Shortlist
Length P@1 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

100 70.88 65.19 63.62 62.59 61.24 69.96 69.24 68.53 67.20
200 70.90 65.27 63.73 62.82 61.97 70.10 69.44 68.90 68.21
400 70.94 65.26 63.71 62.81 62.03 70.15 69.51 69.02 68.47
800 70.96 65.23 63.64 62.69 61.85 70.16 69.52 69.02 68.45

1600 70.96 65.20 63.58 62.58 61.66 70.16 69.5 68.97 68.36
2048 70.97 65.20 63.57 62.58 61.64 70.16 69.5 68.97 68.35

Table 29: Adaptive retrieval ablation over shortlist length k for Ds = 16, Dr =
2048 on ImageNet-4K with exact search.

Shortlist
Length P@1 mAP@10 mAP@25 mAP@50 mAP@100 P@10 P@25 P@50 P@100

100 27.70 14.38 10.62 8.26 6.07 20.12 16.87 14.29 11.26
200 28.56 15.21 11.43 9.11 7.12 21.23 18.13 15.73 13.27
400 29.34 15.83 12.06 9.76 7.79 22.08 19.09 16.83 14.54
800 29.86 16.30 12.53 10.23 8.26 22.72 19.83 17.65 15.45

1600 30.24 16.63 12.86 10.56 8.60 23.18 20.36 18.23 16.11
2048 30.35 16.73 12.96 10.65 8.69 23.31 20.50 18.40 16.30
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