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Abstract. Advancing object detection to open-vocabulary and few-shot
transfer has long been a challenge for computer vision research. This
work explores a continual learning approach that enables a detector to
expand its zero/few-shot capabilities via multi-dataset vision-language
pre-training. Using natural language as knowledge representation, we ex-
plore methods to accumulate “visual vocabulary” from different training
datasets and unify the task as a language-conditioned detection frame-
work. Specifically, we propose a novel language-aware detector OmDet
and a novel training mechanism. The proposed multimodal detection net-
work can resolve the technical challenges in multi-dataset joint training
and it can generalize to arbitrary number of training datasets without
the requirements for manual label taxonomy merging. We pre-train on
more than 20 million images with 4 million unique object vocabulary, and
the resulting model is evaluated on 35 downstream tasks of ODinW [9].
Results show that OmDet is able to achieve the state-of-the-art fine-
tuned performance on ODinW. Moreover, analysis shows that by scaling
up the proposed pre-training method, OmDet continues to improve its
zero/few-shot tuning performance, suggesting a promising way for fur-
ther scaling.

Keywords: Vision-Language Pretraining, Multimodal Machine Learn-
ing, Continual Learning

1 Introduction

Object detection (OD) is one of the monumental tasks in computer vision (CV).
Classical OD research has been focusing on improving the detector network to
achieve higher accuracy with lower latency [19, 18, 14, 26] with fixed output label
set. Recently, an emerging line of research based on vision-language pretraining
(VLP) has been striving to upgrade OD models to solve the more challeng-
ing open-vocabulary setting, where the detector can generalize to new visual
concepts with zero/few-shot adaption [5, 8, 10, 16]. This paper explores a con-
tinual learning approach, i.e., can a detector incrementally learn from many
OD datasets with increasing total visual vocabulary, and eventually achieve the
open-vocabulary detection capabilities?. This approach is appealing for several
reasons: (1) It opens the possibility of life-long learning since one can improve a
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detector’s zero/few-shot performance by feeding it with new datasets. (2) It is
cost-effective since creating many small domain-specific datasets is much cheaper
than creating a single large-vocabulary large dataset [6].

We propose a novel VLP-based object detection framework: OmDet (Omni-
dataset Detection). We first formulate language-aware object detection which is
a generalized version of OD task, i.e. given an image and a task (a set of object n
ames), detecting the object instances that appeared in the task. Secondly, a novel
deep vision-language fusion network is introduced to enable both localization
and classification to be language-aware. Lastly, a new multi-dataset training
algorithm is developed to enable OmDet to learn from arbitrary number of OD
datasets regardless of their label set, and we scale the pre-training to a large
number of datasets with total vocabulary size large than 4 million unique text
labels.

The proposed method is first validated in a small-scale study with four OD
datasets to confirm its multi-dataset learning ability. Then, a larger scale of
study is conducted to scale up OmDet to very large vocabulary pretraining. We
pre-train using a mixture of OD datasets with 20 million images and 4 mil-
lion unique text labels that include both human annotations and pseudo labels.
The resulting model is evaluated on the recently proposed ODinW dataset [9]
that cover 35 different OD tasks in various domains. Comprehensive evaluation
suggests that the proposed continual learning paradigm is able to achieve a new
state-of-the-art performance compared to GLIP [10] that is pre-trained on larger
datasets. Also, we show that accumulating multiple datasets to expand to large
vocabulary OD learning is an effective method to boost OmDet’s zero/few shot
ability as well as parameter-efficient training performance (e.g. prompt tuning).
By generating pseudo labels and adjusting different sampling ratios, OmDet is
able to achieve the SOTA results on ELEVATER challenge.

2 Related Work

Objection detection, one of the predominant tasks in computer vision, aims
to detect bounding boxes and classes of object instances. It has significantly
evolved through the contributions of massive research in recent years. R-CNN
[4] formulates the two-stage detectors paradigm, which is composed of a region
proposal detector and a region-wise classifier. Consequent R-CNN series such
as Fast R-CNN [3] and Faster R-CNN [19] make enhancements on the network
pipeline to improve performance. While one-stage detectors like SSD [14], YOLO
[18], and RetinaNet [12] are also in a competitive position by skipping the region
proposal stage to simplify and speed up the framework. Recently, DETR [1] has
proposed a transformer-based end-to-end object detection framework by framing
the object detection task to a set of predictions. Follow-up DETR variants have
proposed this framework in different directions. However, objection detection
is often formulated as a closed-set problem with fixed and predefined classes
and is diverse from the real-world setting. To conquer the closed-set limitation,
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more realistic scenarios such as Open-Vocabulary Object Detection (OVOD)
have attracted lots of attention.

OVOD refers to the capability of only training on annotated datasets and
generalizing to unseen novel classes. Recently, OVOD has made such progress
with the utilization of a multi-modal vision-language pre-train model. Region-
CLIP [24] generates pseudo-labels for region-text pairs from caption datasets to
perform regional vision-language pre-training and transfer to OVOD. VILD [5]
proposed a two-stage open-vocabulary detector, which distil embeddings from
teacher model CLIP [17] or ALIGN [7]. With inspiration from CoOp [25], DetPro
[2] introduces a technique to learn continuous detection prompt which improves
the performance of VILD. OWL-ViT [16] uses the pre-trained image-text model
as the base, then transfers it to the object detection domain by adding down-
stream detection heads and fine-tuning on OD datasets.

Unlike previous multi-dataset object detections, the proposed method is not
required to have any extra human cost and naturally learning objects with the
fused task embeddings from multiple datasets. Additionally the proposed model
has OVOD capabilities by simply expanding the visual concept vocabulary size
with more datasets and pseudo labeling from image-caption datasets.

3 Proposed Method

OmDet is designed for task-conditioned detection. Let V be a large vocabulary
of objects types that OmDet can potentially detect. A task T = {w1, w2, ...wk}
is a set of k object types that the model should detect in this forward path,
where w ∈ V . Note that the size of T can be dynamic ranging from 1 to K,
where K is the maximum supported number of object types in a single inference
run. Then given an input image x and a task T , the model is expected to detect
all of objects that appeared in T from x. Since T is not fixed, an ideal model
can dynamically adapt its detection targets conditioned on the task.

3.1 Model Architecture

Following the above design principle, OmDet is introduced, a task-conditioned
detection network that can learn from infinite combinations of tasks. It is com-
posed of a vision backbone, a task encoder, a label encoder, and a multimodal
detection network. The overall structure is illustrated in Fig1. The following will
describe each component in details.

Vision Backbone Starting from the initial image ximg ∈ R3×H0×W0 (with 3
color channels), let the vision encoder fv be a conventional CNN backbone or Vi-
sion Transformer backbone (e.g. Swin Transformer) generates a lower-resolution
visual feature map f ∈ RC×H×W at each output layer. Then Feature Pyramid
Network (FPN) [11] is used to aggregate information from top to bottom and
output a set of visual feature maps {P2, P3, P4, P5}.

Task Encoder and Label Encoder The task set T = {w1, w2, ...wk} ∈
Rk×V is set of natural language words. Then a task encoder ft or a label en-
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Fig. 1. Overview of the proposed OmDet Detector.

coder fl is a transformer model that encode the task set T without order in-
formation, and output a set of contextual word embeddings, i.e. {t1, t2, ...tk} =
ft(w1, w2, ...wk) ∈ Rk×d and {l1, l2, ...lk} = fl(w1, w2, ...wk) ∈ Rk×d, where d is
the contextual word embedding dimension size.

Multimodal Detection Network The Multimodal Detection Network (MDN)
is a core component of OmDet. We deploy early fusion to combine information
from the image and current task early on, in order to achieve strong performance.
We are inspired by the Sparse-RCNN [22] network design, and developed an it-
erative query-based fusion mechanism.

Let Q ∈ RN×d be a fixed small set of learnable proposal features. It is a set of
high-dimensional (e.g., d = 256) latent features that capture the rich information
of a potential instance, by combining information from the vision backbone and
contextual task embedding from the task encoder. Also, let B ∈ RN×4 be a set
of learnable proposal boxes that is one-to-one assigned to each proposal feature.
Then given the FPN output and task/label encoder output, the initial MDN
operates as the following:

v0 = RoiPooler({P2, P3, P4, P5}, B0) (1)

[Q1, T1] = MHSA([Q0, T0]) (2)

Q2 = DynamicCov(Q1, v0) (3)

B1 = RegHead(Q2) (4)

C1 = γcosine(ClsHead(Q2), L) (5)

Note that MDN can be stacked to iterative refine its output the same as
Sparse-RCNN, with the key difference that T is fused with the proposal feature
before Dynamic Convolution layer and also T is also iterativly updated at each
run of MDN block. This enables the network to learn to adjust the task embed-
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ding and the proposal embedding jointly and adapt both object localization and
object classification head conditioned on the given task.

3.2 Model Training

Set Prediction Loss Given the above network, OmDet also uses set prediction
loss [1] on the fixed-size set of predictions of classification and box coordinates.
Set-based loss produces an optimal bipartite matching between predictions and
ground truth objects using Hungarian algorithm. The matching cost is defined
as follows:

L = λcls · Lcls + λL1
· LL1

+ λgiou · Lgiou (6)

Here Lcls is focal loss [12] of predicted classifications and ground truth cate-
gory labels. LL1

and Lgiou are L1 loss and generalized IoU loss [1] between nor-
malized center coordinates and height and width of predicted boxes and ground
truth box, respectively. λcls, λL1

and λgiou are coefficients of each component.
The training loss is the same as the matching cost except that only performed
on matched pairs. The final loss is the sum of all pairs normalized by the number
of objects inside the training batch.

Task-Sampling Strategy In order to simulate the extreme multi-tasking
setting at the training time and also enforce the model to condition its output
on a given task, a novel task sampling strategy is used during training.

1. Let the max size of of a given task be K, for an image x from a dataset d in
the mini-batch, we first sample k ∈ [1,K] with a uniform distribution.

2. Let the number of unique object types in x be m, if m > k, then only a
random subset of k object types are kept and the extra annotations are
removed for this mini batch. If m < k, then additional negative object types
are randomly selected from the vocabulary V of dataset d. If the vocabulary
size of data d is less than K, then the reminder of missing negatives are filled
with masking 0.

4 Pre-training and Transfer to ODinW

4.1 Experiment Setup

Large-scale Pre-training: COCO [13], Object365 [20], LVIS v1 [6], PhraseCut
[23], and Google Conceptual Captions (GCC) [21] are used for large-scale pre-
training. Specifically, GCC does not have bounding box annotations, so we utilize
the phrase grounding ability of GLIP [10] to generate pseudo labels.

Downstream Tasks: ODinW is selected as the test data from ELEVATER
benchmark [9] which is a new OD benchmark that consists of 35 diverse real-
world tasks (Table 3 in Appendix). We select ODinW as the source of down-
stream tasks because of its diversity in terms of domain, training data size,
number of categories, etc. Also, many of the 35 tasks have very limited (less
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than 100) training images, which makes it an extremely difficult task for stan-
dard detectors without any pre-training. We use the official train and test split
for training and evaluation.

Training: For OmDet models, the initial learning rate is 5e-5 and it decays
at 70% and 90% of total iteration steps by 0.1. ConvNeXt Tiny backbone and 6-
layer detection head is used. For OmDet-Base, we use ConvNeXt Base as vision
backbone. The batch size is 32 and the maximum number of detections per
image is 300 and K is set to 80. All of the proposed models are pre-trained for
36 epochs using 16 NVIDIA A100 GPUs and then fine-tuned on the downstream
data. All of the pre-training and fine-tuning experiments are conducted with the
parameters of CLIP text encoder frozen.

Compared Models: The compared models including:

1. GLIP-Tiny: GLIP [10] is the state-of-the-art model used in ODinW dataset
[9] that is pre-trained on a large set of visual grounding and OD data.

2. OmDet-C/CO/COL/COLP: we incrementally increase the number of pre-
train datasets, including 4 intermediate variations. They are C (COCO) [13],
CO (COCO + Object 365) [13, 20], COL (COCO + Object 365 + LVIS) [13,
20, 6] and COLP (COCO + Object 365 + LVIS + PhraseCut) [13, 20, 6, 23].

3. OmDet: OmDet is pre-trained on all of the pre-training data, and for GCC
[21], pseudo labels generated on 3M images are used.

4. OmDet-Base: OmDet-Base is similar to OmDet, except switching to Con-
vNeXt [15] backbone and adding extra 3 million GCC images.

4.2 Results and Discussion

Overall, OmDet achieves the best detection performance compared to the other
4 variations (C/CO/COL/COLP) based on Table 1. Also, OmDet outperforms
GLIP-Tiny [9] under full-model fine-tuning, which is pre-trained on a much
larger dataset with a tunable text encoder. We then analyze the results from two
aspects: (1) zero/few-shot performance and (2) parameter-efficient fine-tuning.

Models Backbone Pre-train Data Zero-shot Full-model FT Head-only FT Prompt FT

GLIP-Tiny [9] Swin-T O365,GOLDG 19.7 63.2 - 54.4

OmDet-C ConvNeXt-T COCO 9.8 61.7 54.7 (-11.3%) 21.0 (-65.9%)
OmDet-CO ConvNeXt-T COCO,O365 13.5 63.2 56.8 (-10.1%) 24.8 (-60.7%)
OmDet-COL ConvNeXt-T COCO,O365,LVIS 12.4 63.2 57.6 (-8.8%) 25.5 (-59.6%)
OmDet-COLP ConvNeXt-T COCO,O365,LVIS,PC 13.5 63.0 58.5 (-7.1%) 29.3 (-53.4%)
OmDet ConvNeXt-T COCO,O365,LVIS,PC,GCC3M 16.0 63.7 59.8 (-6.1%) 34.7 (-45.5%)

OmDet-Base ConvNeXt-B COCO,O365,LVIS,PC,GCC6M - 65.7 - -

Table 1. Average AP of zero-shot, full-model, head-only, and prompt fine-tuning (FT)
on 35 downstream tasks in ODinW. The gray text shows the performance drop of
parameter-efficient tuning compared to full-model tuning.

Zero/Few-Shot Object Detection As shown in Table 1, adding more pre-
train datasets yields significant improvement in zero-shot settings. Specifically,
adding object365 dataset gives an absolute gain of 3.7 points on the average
mAP. Surprisingly, adding LVIS to the pre-train data hurts performance by
1.1 points. We speculate that the performance drop is due to the noisy and
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incomplete annotations of LVIS dataset. Adding GCC dataset to the pre-train
corpora yields another huge gain, leading the zero-shot performance to 16.0
(compared to 9.8 for OmDet-C).

Meanwhile, the 35 downstream tasks in ODinW come with different train-
ing data sizes, varying from only 17 training images to more than 32K training
images. Therefore, we divide the 35 tasks into three categories: (1) Few-shot (8
tasks): tasks with fewer than 200 training images (2) Medium-shot (13 tasks):
tasks with between 200 to 2000 training data (3) Big-shot (14 tasks): tasks with
more than 2000 training images. Results with full-model fine-tuning are sum-
marized in Table 2. Results show that large-scale multi-dataset pre-training is
particularly effective for few-shot and medium-shot tasks with limited in-domain
training data. Especially for few-shot datasets, OmDet outperforms OmDet-C
with 6.41 absolute AP points. Whereas for Big-shot tasks, we do not see consis-
tent improvement when increasing the size of pre-training datasets. We suspect
that big-shots tasks already contain enough information in the training set, which
shadows the improvement from the pre-training stage.

Fig. 2. Vocabulary size used in pre-training vs. the AP score of fine-tuning on ODinW
with head-only and prompt tuning. X-axis is in log-scale.

Models Few-Shot Medium-Shot Big-Shot

OmDet-C 49.48 57.09 70.16
OmDet-CO 54.37 58.89 70.98
OmDet-COL 55.07 57.99 71.22
OmDet-COLP 53.44 58.05 70.94
OmDet 55.89 59.23 70.54

Table 2. Average AP of full-model fine-tuning on 35 downstream tasks in ODinW for
Few-shot, Medium-Shot, and Big-Shot tasks.

Parameter-efficient Fine-tuning As large-scale pretraining models get
significantly larger, e.g., more than 1B parameters, the cost to fine-tune (FT)
the entire model becomes prohibitive for low-end GPUs. Parameter-efficient fine-
tuning is designed to alleviate this challenge by only tuning a very small pro-
portion of the entire model. In this paper, we explore two options: Head-only
Tuning and Prompt Tuning.

Experimental results show that large-scale multi-dataset pre-training is cru-
cial for successful parameter-pretraining (Table 1). For Head-only FT, the per-
formance drop is reduced from 11.3% for OmDet-C to only 6.1% for OmDet.
The same trend is observed for Prompt FT, in which the performance drop
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compared to full-model tuning is reduced from 65.9% to 45.5% from OmDet-C
to OmDet. Figure 2 also visualizes the trend of AP vs. the vocabulary size in
pre-training (log-scale). The apparent up-going curve can be observed as more
visual concepts are included during pre-training. This suggests that:

(1) Multi-dataset pre-training enables the accumulation of a large number
of visual concepts, which leads to a stronger backbone that extracts general-
purpose visual features (supported by head-only FT results).

(2) The diversity in language is crucial for successful prompt tuning such
that the entire model output can be controlled by the task embedding only (less
than 1% of the parameters of the entire model).

Also, we found that the prompt-tuning performance of OmDet is significantly
lower than GLIP. We suspect the prompt tuning used in OmDet is too simple,
i.e., initialize the task embedding with natural language and tune the task word
embedding alone. We plan to improve the prompt-tuning strategy in a later
version of this pre-print.

Training Strategy of SOTA In order to reach better performance on EL-
EVATER challenge, we pre-train a larger model, OmDet-Base, with ConvNext
Base backbone. All pre-training data of OmDet are used, together with another
3 million images from GCC. After pre-training, we first jointly fine-tune the 35
datasets of ODinW for 3X schedule with a fair sampling strategy that assigns
each dataset with the same probability. This first-stage fine-tuning already gives
us better performance than experiments that we have done before. We further
train another 1x schedule by increasing the sampling ratio to 2 for datasets
that are not yet converged and keeping other datasets as 1. Using this sampling
strategy, our full-shot result on ODinW increases to 65.7.

5 Conclusion

This work proposes to advance zero/few-shot OD via continual pre-training
from a large number of OD datasets. OmDet is proposed to solve the taxon-
omy conflict and fore/background inconsistency problems during multi-datasets
joint training. The proposed deep fusion mechanism, Multimodal Detection Net-
work, is able to detect specified objects conditioned on users task input in the
format of free-form natural language. Experiments show that enlarging the vo-
cabulary size via multi-datasets pre-training effectively improves zero/few-shot
learning and parameter-efficient fine-tuning. OmDet achieved the state-of-the-
art performance on a diverse set of downstream tasks. Future research will focus
on improving OmDet by efficient task-sampling strategy, utilizing more diverse
multimodal datasets, and exploring diverse language and vision backbones with
freezing particular parameters or fully updating them.
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Dataset Categories # Train Image #Test Image

CottontailRabbits 1 1980 10
EgoHands(generic) 1 3840 480
MountainDewCommercial 1 17 1
Packages 1 19 3
Raccoon 1 150 17
WildfireSmoke 1 516 74
Pistols 1 2377 297
Pothole 1 465 67
MaskWearing 2 105 15
NorthAmericaMushrooms 2 41 5
OxfordPets(species) 2 2523 358
PKLot640 2 8691 1242
ThermalCheetah 2 90 14
ThermalDogsAndPeople 2 142 20
BCCD 3 255 36
HardHatWorkers 3 5069 1766
ShellfishOpenImages 3 407 58
EgoHands(specific) 4 3840 480
AerialMaritimeDrone(large) 5 52 7
AerialMaritimeDrone(tiled) 5 371 32
VehiclesOpenImages 5 878 126
BrackishUnderwater 6 11739 1468
Dice 6 576 71
Aquarium 7 448 63
DroneControl 8 32688 4675
WebsiteScreenshots 8 1688 242
SelfDrivingCar 11 24000 3000
ChessPieces 13 202 29
UnoCards 15 6295 899
PascalVOC 20 13690 3422
AmericanSignLanguageLetters 26 1512 72
Plantdoc 30 2128 239
BoggleBoards 36 285 35
OxfordPets(breed) 37 2437 345
OpenPoetryVision 43 2798 402

Total 314 132314 20070
Table 3. Statistics of ElEVATER 35 object detection datasets


