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Abstract

The recent advances in generative models have resulted in massive progress in1

the quality of the generated images to the point that in many cases they cannot be2

easily distinguished from real images. Despite this quality improvement, using AI3

generated images for the purpose of training robust down-steam computer vision4

models for real-world applications has proven to be very challenging. The AI5

generated images usually lack the required diversity and scene complexity that is6

crucial for many real-world applications, specifically the ones with safety concerns.7

The difficulty of this challenge grows significantly when the underlying application8

involves detection of some specific objects that appear with critically low frequency9

in the available real datasets. This paper studies a new approach for generating10

diverse, complex and domain-compatible synthetic images for detecting infrequent11

objects by employing a diffusion-based generative model pretrained on a generic12

dataset. More specifically, the impact of using the generated synthetic images with13

the proposed approach in solving the real world problem of detecting emergency14

vehicles in road scenes is investigated. Furthermore, the challenges of generating15

synthetic datasets with the proposed approach will be thoroughly discussed.16

1 Introduction17

Detection of some domain specific and infrequent objects can be a crucial part of many computer18

vision based systems. An example of such scenario is the detection of emergency vehicles for an19

autonomous driving car application. Since the number of images containing the specific objects of20

interest in the available datasets is critically limited, generating supplementary synthetic images is a21

viable solution for training robust downstream object detection models.22

Employing deep generative models to generate synthetic images for training downstream models in a23

real-world application imposes some key challenges listed as follows:24

Insufficient samples to train the generative model A deep generative model relies on a large25

training dataset covering different varieties of the object of interest to be able to generate realistic26

images. In the case of infrequent objects, the lack of sufficient training images is the reason synthetic27

images are required in the first place.28

Insufficient diversity and scene complexity The majority of of recent advancements in improving29

the performance of generative models have been focused on enhancing the quality of the generated30

images and making them more photo-realistic. The AI-generated images usually lack the required31

scene complexity and diversity which is essential for training robust downstream models (Block et al.32

2006).For the same reason there is normally a distribution shift between the generated images and the33

real ones in terms of complexity and diversity (Joshi 2019).34
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Figure 1: Block diagram of the architecture of the proposed approaches.

Figure 2: A few examples of input and output endpoints for Approach 1 .

Generated images may require labeling As opposed to synthetic images generated by rendering35

engines, AI-generated images may require an annotation process to be ready for a real application.36

In order to tackle the above challenges and generate synthetic images that can be effectively used in37

real-world applications, in this paper we investigate three different approaches of using a generative38

model that has been only trained on a generic dataset. The proposed approaches can be used to39

generate a large, complex and widely diverse dataset from a small relevant real dataset. We use40

a diffusion-based model (Ho, Jain, and Abbeel 2020) (Kim and Ye 2021) (Dhariwal and Nichol41

2021) that can be conditioned on different information and be partially masked during the generative42

process to make carefully controlled changes in the real images in a systematic way. This allows43

the generation of a sufficiently large domain-compatible dataset that covers the required variety and44

complexity for training a robust downstream model. Since the proposed approach uses real images45

as the basis to create the synthetic images, there is no domain-shift between the generated images46

and the real dataset. Conditioning the generative process on a set of guiding text prompts as well as47

partially masking specific parts of the image during the process allows imposing a customized level of48

diversity while maintaining the domain characteristics and scene complexity of the real images. The49

proposed approach also allows either preserving the available annotations or automatically generating50

new annotations for the synthetically generated objects. We run several experiments to extensively51

assess the performance enhancement that the generated images provide to the final downstream object52

detection models.53

2 Related Work54

A wide variety of approaches have been investigated for synthetic data creation including simple55

rule-based algorithms, statistical models, computer simulations and data augmentation techniques.56
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One of the most commonly used approaches to generate synthetic image data is through the use of57

photo-realistic 3D physics engines (Pollok et al. 2019) (Cisse et al. 2017). These engines can be58

used to render images from 3D computer-aided design (CAD) models of the target objects. The59

photo-realism achieved through these image rendering engines has reached a point where synthetic60

images can be hardly distinguished from real ones (Hamesse et al. 2019). However, there are some61

drawbacks to these synthetic data generation approaches that make them unsuitable for many practical62

applications. These include, but are not limited to, requiring 3D asset development, challenges in63

tuning design parameters (e.g. brightness) and lack of the required diversity and complexity in the64

image background.65

Deep generative models including generative adversarial networks (GANs) have been vastly studied66

for synthetic image generation and synthetic augmentation (Vega-Marquez et al. 2019)(Frid-Adar et67

al. 2018). In the field of medical imaging, GAN-based data augmentation has particularly been used68

to improve sensitivity and specificity of models tried on small medical imaging datasets by 5-7%69

(Bowles et al. 2018) (Frid-Adar et al. 2018). Class imbalance has been addressed by generating70

additional examples of infrequent samples through adversarial autoencorders, a GAN variant (Lim et71

al. 2018).More over, deep learning based style transfer has shown 2% improvements in classification72

accuracy over traditional augmentation strategies (Zheng et al. 2019). Style transfer, in particular, is73

capable of preserving image content while copying the style of a separate, unrelated image (Gatys,74

Ecker, and Bethge 2015).75

Denoising diffusion models were initially introduced by (Sohl-Dickstein et al. 2015). Recent work76

has demonstrated the ability of diffusion models to compete and potentially outperform traditional77

generative adversarial networks in realistic image generation and producing synthetic results indistin-78

guishable from real images to human evaluators in some cases (Dhariwal and Nichol 2021) (Zhou et79

al. 2019).80

3 Methodology81

In the proposed methodology for syntehtic image generation, first a pretrained diffusion model82

(Dhariwal and Nichol 2021) (Nichol et al. 2021) is fine-tuned on a generic dataset which does not83

necessarily include the infrequent target objects (we used a generic driving dataset (Yu et al. 2020)).84

In order to condition the diffusion process on text, we use a CLIP model (Radford et al. 2021)85

that perturbs the denoising process mean with the gradient of the dot product of the image and text86

encoding with respect to the image. Next, we explore three different image manipulation approaches87

with this model that allows generating synthetic images that contain a large variety of infrequent88

objects of interest. These synthetic images are then used for training downstream object detection89

models as shown in Figure 1. Finally, a text-conditioned super-resolution diffusion model is cascaded90

with the generative model in the pipeline to increase the resolution of the generated images. The91

proposed approaches are based on the assumption that a very small but domain-relevant real dataset92

is available and synthetic images are generated by manipulating those real images. In fact, using this93

small real data as the basis is essential in keeping the generated images in the target domain. In this94

section, the three proposed image manipulation approaches will be explained in detail.95

3.1 Approach 1: Synthetic Infrequent Objects in a Real Background96

The idea behind this approach which is depicted in the upper part of Figure 1, is to generate instances97

of the infrequent objects of interest inside a background sampled from the real dataset to maintain the98

generated images in the same domain as the real dataset. The importance of this approach is that it can99

be employed to generate a sufficiently large synthetic dataset even if the real dataset does not include100

any images containing the infrequent target objects. The architecture of this approach consists of101

four main components: A mask generator block, a text prompt composer unit, a text guided diffusion102

generative model and a super-resolution model. The input image serving as background and the103

corresponding annotations are first fed to a mask generator block which proposes a mask based on104

the current bounding boxes in the image. The generated mask is then applied to the original image105

and the resulted masked image is fed to the text conditioned diffusion model. The diffusion model106

iteratively manipulates the masked part of the image following the input text prompt guidance until it107

generates an instance of the target object inside the masked section which is well blended with the108

background. The output of this model is then fed to a diffusion-based super-resolution model (Nichol109
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Figure 3: An examples of the steps of Approach 2 .

Figure 4: An example of changing the weather condition in the real image using Approach 3 .

and Dhariwal 2021) to enhance its resolution. The super-resolution model can also be conditioned110

on the text prompt for improved enhancement. Figure 2 illustrates a few examples of the inputs and111

output endpoints of the pipeline of this approach.112

In the rest of this subsection, the mask generator and prompt composer blocks are described.113

3.1.1 Mask generator block114

This block proposes a region for masking the input image based on the available bounding boxes115

in the annotations. In order to find a proper area for the placement of the target object, one or more116

adjacent bounding boxes are randomly picked and merged together to make a target bounding box117

while the following rules are met:118

• The proposed bounding box should not cut any of the other bounding boxes to avoid119

unrealistic coincidences between the generated objects and the ones in the background.120

• If needed, the orientation of the bounding box should be compatible with the required121

object alignment. Usually the orientation of the bounding box dictates the orientation of the122

generated object and can be used as an additional factor for randomization.123

Other customized rules can be easily integrated in this framework depending on the target application.124

3.1.2 Text prompt composer unit125

This block composes a text prompt to guide the diffusion process toward generating the desired target126

image. Each composed prompt consists of five main components as follows:127

Subject In approach 1, subject is randomly sampled from the list of infrequent target objects.128

Verb Verb is randomly sampled from a list of possible actions relevant to the target object. For129

example for a driving scene dataset, the possible verbs can be driving, crossing, parking, etc.130

Location Represents the location of the target object in the image and it can be either extracted from131

meta data (approach 1) or randomly sampled from possible options (approach 2).132

Condition This field describes a global condition for the image. For example for a road scene dataset133

this field can describe the weather condition, e.g. rainy, snowy, foggy, etc.134

Time Optionally describes the time of day, e.g. morning, night, sunset, etc.135
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Figure 5: Examples demonstrating challenges with text condition image generation approaches.

3.2 Approach 2: Real Infrequent Objects in Synthetic Background136

This approach can be also represented by the top part of 1. However instead of generating target137

objects in a real background, it generates a synthetic background for a real target object. The target138

object is first cropped from a real image and after random resizing is placed in a random position in a139

blank (all zeros) background. The resulted combinations is then fed to the diffusion model. There are140

two important differences between this approach and approach 1:141

1. As opposed to approach 1, in this approach the mask only covers the real object and leaves142

everywhere else in the image available for the diffusion model’s generative manipulation.143

This results in the generation of a background that follows the text prompt guidance and144

blends well with the real object.145

2. In this approach, the prompt composer unit randomly samples all of the background-related146

fields such as verb, location, condition and time from the the corresponding lists that are147

provided to the module based on the target application. The only field that will be extracted148

from the annotation is the type of target object that has been cropped from the real image.149

Figure 3 illustrates the steps of this approach in an example.150

3.3 Approach 3: Real Images Globally Altered151

The third approach is represented by the bottom part of the block diagram in Figure 1. In this152

approach, certain aspects of the real images are altered as they are converted from low to high153

resolution by conditioning the super-resolution model to text prompts that guide the diffusion process154

toward those modifications. As suggested by the diagram, in this approach no masking is required as155

the entire input image is subject to the model’s subtle modifications. In order to propose suitable text156

prompts for randomized modifications to input images, the text composer unit randomly samples the157

condition field from a list of application-relevant conditions while rest of the fields are extracted form158

the annotations or meta-data if it is available. For example, multiple altered versions of an input real159

image can be generated synthetically by randomizing on weather condition or the time of the day.160

Figure 4 shows some examples of these modifications along with their corresponding text prompts.161

4 Dataset162

As explained in the previous section, the proposed approaches use a small real dataset as the basis to163

create the synthetic images. In this section, we introduce the real dataset that was used as a base for164

generating the synthetic images in all of our experiments.165

4.1 LAVA and LAVA-emergency datasets166

The LISA-Amazon Vehicle and Scene Attributes (LAVA) dataset (Ninad et al. 2021) has been167

collected as a part of a collaboration between the Amazon Machine Learning Solutions Lab with the168
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Table 1: The distribution of images and bounding boxes for the real and synthetic datasets.

Dataset Num. images Medical Fire Police
Real-Train 215 47 42 126
Real-Test 539 270 68 215

Type-1 1876 447 569 939
Type-2 1875 620 306 949

Table 2: Downstream object detection performance for each dataset.

Model and backbone Dataset Num. train images mAP@0.50:0.95 mAR@0.50:0.95
SSD ResNet101 V1 FPN R 215 0 0.028
SSD ResNet101 V1 FPN R, S1 2091 0.147 0.441
SSD ResNet101 V1 FPN R, S2 2090 0.396 0.59
SSD ResNet101 V1 FPN R, S1, S2 3966 0.372 0.586
SSD MobileNet V1 FPN R 215 0 0.095
SSD MobileNet V1 FPN R, S1 2091 0.129 0.331
SSD MobileNet V1 FPN R, S2 2090 0.475 0.637
SSD MobileNet V1 FPN R, S1, S2 3966 0.357 0.583

EfficientDet D1 R 215 0.053 0.439
EfficientDet D1 R, S1 2091 0.136 0.523
EfficientDet D1 R, S2 2090 0.368 0.594
EfficientDet D1 R, S1, S2 3966 0.458 0.641

Faster RCNN Inception ResNet V2 R 215 0.173 0.451
Faster RCNN Inception ResNet V2 R, S1 2091 0.454 0.723
Faster RCNN Inception ResNet V2 R, S2 2090 0.521 0.695
Faster RCNN Inception ResNet V2 R, S1, S2 3966 0.494 0.714

Laboratory of Intelligent and Safe Automobiles at the University of California, San Diego (UCSD) to169

build a large and richly annotated driving dataset with fine-grained vehicle, pedestrian, and scene170

attributes.171

The LAVA dataset is annotated for all types of vehicles, traffic signs, traffic lights and pedestrians172

with 2D bounding boxes, class labels and some meta data. A subset of the LAVA dataset that covers173

all the images with emergency vehicles in them (in addition to other vehicles) was separated and used174

for generating synthetic images and training the downstream object detection models. We refer to175

this subset as LAVA-emergency dataset.176

Table 1 shows the class distribution of the train and test splits of the LAVA-emergency dataset. It is177

essential to reserve a reasonable portion of the real dataset for testing to be able to reliably evaluate178

the impact of synthetic data generation approaches.179

5 Experiments180

5.1 Experimental Setup181

For all of the experiments in this section, the LAVA-emergency dataset is used as a base for generating182

synthetic images using the approaches in section 3. The downstream task in our experiments is the183

detection of emergency vehicles including medical vehicles (ambulances), fire engines and police184

cars. These emergency vehicles appear with a critically low frequency in the road-scene datasets.185

For better understanding of the evaluation results, we group the synthetic data generation techniques186

into three general types. Type-1 (S1), represents the approaches wherein the emergency vehicles187

themselves are synthetically generated (only Approach 1). Type-2 (S2) represents all the approaches188

wherein the emergency vehicles are real but they have been placed in a synthetically generated or189

modified background (approach 2 and approach 3). Table 1 shows the distribution of generated data190

over different emergency vehicles categories.191

In these experiments, for composing the text prompts, the weather condition is randomly and192

uniformly sampled from a list of 5 weather conditions namely, sunny, rainy, snowy , foggy and cloudy.193
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The location of the vehicle is randomly sampled from one of four options: street, road (each with194

a probability of 0.35), parking (with a probability of 0.25) and bridge (with a probability of 0.05).195

Each synthetic image is generated by applying 100 diffusion steps to the masked real input image (in196

Approach 1 and 2). The resolution of the generated images is then enhanced by applying 30 addition197

diffusion steps through the super-resolution model. Each experiment uses either only real data (R) or198

a combination of it with one or more types of synthetic images. The objective of these experiments is199

to evaluate how each of the synthetic data generation approaches improves the performance of the200

downstream object detection models when combined with the real data.201

5.2 Results202

Table 2 shows the performance of various object detection algorithms trained on difference com-203

binations of real and synthetic images on the emergency-LAVA test set. As shown in this table204

the single-stage detectors such as different flavors of SSD and EfficientDet are barely able to learn205

anything from the small real training set. However, incrementally adding synthetic images to augment206

the real training images remarkably improves the detector’s performance on the real test set.207

The EfficientDet D1 model has monotonically increasing mAP and mAR as more synthetic data208

is added. For SSD ResNet101, SSD MobileNet and Faster R-CNN models there is a considerable209

performance improvement when trained on R, S1 or R, S2 compared to when they are only trained210

on R. However, for these models, there is a slight drop in performance when they are trained on R,211

S1, S2 compared to when they are trained on R, S2. As mentioned in section 3.1, in synthetic Type-1212

images the emergency vehicles themselves are generated by the model and the generator model has213

been trained on a generic dataset which contains vehicles from a variety of different countries in214

the world. The LAVA-emergency test set however contains only emergency vehicles from Southern215

California, and thus the discrepancy in performance when involving S1 in training along with S2216

can be explained by the change in emergency vehicles characteristics from different geo-locations.217

However, in S2 images, the emergency vehicles have been directly adopted from emergency-LAVA218

training set and they are compatible with the emergency vehicles in the test set. Therefore, increasing219

the number of Type-2 images always improves the performance of all of the object detection models.220

This is seen experimentally when comparing the results from models trained with R, S1 and R, S2.221

The models trained with R, S2 have consistently higher performance than those trained on R, S1 for222

all models and backbones.223

5.3 Practical Challenges224

Although the synthetically generated images by the proposed approaches are realistic and diverse,225

there are a few challenges that need to be considered depending on the target application as follows:226

Relative size of the objects When an image generation process is conditioned on text, sometimes227

the relative sizes of the generated objects can be slightly out of proportionate with respect to the228

background objects, regardless of the type of the generative model. While some downstream vision229

tasks such as object detection are not negatively impacted by this, some others may be impacted. The230

top row of Figure 1 shows a few examples with slightly disproportionate objects.231

The number of the objects One of the concepts that normally do not transfer properly between232

language and vision spaces is the exact quantity of objects. Similar to the previous case, the exact233

number of objects does not impact many of the vision tasks (e.g. object detection).234

The relative position of the objects Similar to relative sizes of objects, their relative positions with235

respect to each other can sometimes be unrealistic when the generative process is conditioned on text.236

The bottom row of Figure 5 shows a few examples impacted by this effect.237

6 Conclusions238

In this work, a new approach for generating synthetic data for training downstream models in a239

critically low data regime was studied. The experimental results showed that employing the synthetic240

images generated by the proposed approach significantly improved the performance of all of the241

investigated object detection models. Employing approaches similar to the proposed approach to242

7



augment insufficiently small real datasets used in training the downstream computer vision models is243

specifically crucial for applications with safety concerns.244
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