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Abstract. Given an unlabeled dataset and an annotation budget, we
study how to selectively label a budgeted number of instances so that
semi-supervised learning (SSL) on such a partially labeled dataset is
most effective. We focus on selecting the right data to label, in addition
to usual SSL’s propagating labels from labeled data to the rest unla-
beled data. This instance selection task is challenging, as without any
labeled data we do not know what the objective of learning should be.
Intuitively, no matter what the downstream task is, instances to be la-
beled must be representative and diverse: The former would facilitate
label propagation to unlabeled data, whereas the latter would ensure
coverage of the entire dataset. We capture this idea by selecting cluster
prototypes, either in a pretrained feature space, or along with feature
optimization, both without labels. Our unsupervised selective labeling
consistently improves SSL methods over state-of-the-art active learning
given labeled data, by 8∼25× in label efficiency. For example, it boosts
FixMatch by 10% (14%) in accuracy on CIFAR-10 (ImageNet-1K) with
0.08% (0.2%) labeled data, demonstrating that small computation spent
on selecting what data to label brings significant gain especially under a
low annotation budget. Our work sets a new standard for practical and
efficient SSL for real-world applications.

1 Introduction

Deep learning’s success on natural language understanding [15], visual object
recognition [26], and object detection [20] follow a straightforward recipe: better
model architectures, more data, and scalable computation [21, 23, 27, 42]. As
training datasets get bigger, their full task annotation becomes infeasible [1,37].

Semi-supervised learning (SSL) deals with learning from both a small amount
of labeled data and a large amount of unlabeled data. In SSL, the lower the an-
notation level, the more important what the labeled instances are to good gen-
eralization. While a typical image could represent many similar images that we
will counter in downstream, an odd-ball only represents itself. Labeled instances
may even only cover part of the data variety, trapping a classifier in partial views
with unstable learning.

A common assumption in SSL is that labeled instances are sampled randomly
either over all the available data or over individual classes, the latter known
as stratified sampling [1, 2, 37, 41]. Each method has its own caveats: Random
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data

labeled 
instances 

unlabeled 
instances 

instance 
selection loss

classifier
model

a) Selective Labeling for SSL b) Past Model-Centric SSL

instance 
selection

classifier
model

labeled 
instances 

unlabeled 
instances 

c) Continuous Active Learning

Fig. 1: Our unsupervised selective labeling is a novel aspect of semi-supervised
learning (SSL) and different from active learning (AL). a, b) Existing SSL meth-
ods focus on optimizing the model given labeled and unlabeled data, while we
focus on optimizing the selection of training instances prior to label acquisition.
c) Existing AL methods require initial randomly-selected labeled data, while we
select instances from unlabeled data without knowing the classification task.

Property
Semi-supervised

Learning

Active

Learning

Semi-supervised

Active Learning
Ours

Uses no initial random labels ✗ ✗ ✗ ✓

Actively queries for labels ✗ ✓ ✓ ✓

Requires annotation only once ✓ ✗ ✗ ✓

Leverages unlabeled data ✓ ✗ ✓ ✓

Allows label reuse across runs ✓ ✗ ✗ ✓

Table 1: Key properties of SSL, AL, SSAL, and our USL/USL-T pipelines.
Among them, our approach is the only one that does not use any random labels.

sampling can fail to cover all semantic classes and lead to poor performance and
instability, whereas stratified sampling is utterly unrealistic in the wild : If we
can sample data by category, we would already have the label of every instance!

We address unsupervised selective labeling for SSL (Fig. 1) close to the wild:
Given only an annotation budget and an unlabeled dataset, among many possible
ways to select a fixed number of instances for labeling, which way would lead to
the best SSL model performance when trained on such partially labeled data?

Our work differs from active learning (AL) methods that they often require
randomly sampled labeled data to begin with, which is sample-inefficient in low-
label settings that SSL methods excel at [8]. Most notably, our work is the first
unsupervised selective labeling method on large-scale recognition datasets that
requests annotation only once (see Table 1 for comparisons on key properties).

Fig. 2 shows that our method has many benefits over random or stratified
sampling for labeled data selection in accuracy, coverage, balance over classes,
and representativeness. As it selects informative instances without initial labels,
it can not only integrate readily into existing SSL methods, but also achieve
higher label efficiency than SSAL methods. While most AL/SSAL methods only
work on small-scale datasets such as CIFAR [25], our method scales up easily to
large-scale datasets that are often encountered in the wild, as the selection runs
within an hour on a commodity GPU server on ImageNet [34].
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Fig. 2: Our instance selection outperforms random and stratified sampling by
selecting a diverse set of representative instances. a) SSL classification accuracy
increases with our selectively labeled instances. b) Our method covers all the
semantic classes with few instances. c) Our selection is far more balanced than
random sampling. d) On a toy dataset of 3 classes in ImageNet, our top-ranked
instances cover informative samples across the entire space.

Our work sets a new standard for practical SSL with these contributions:
1. We systematically analyze the impact of different selective labeling methods

on SSL under low-label settings, a previously ignored aspect of SSL.
2. We propose two unsupervised selective labeling methods that capture repre-

sentativeness and diversity without or along with feature optimization.
3. We benchmark extensively on our data selection with various SSL methods,

delivering much higher sample efficiency over sampling in SSL or AL/SSAL.
4. We demonstrate our method’s domain transfer ability to select samples in

medical imaging with a model that never saw medical images.

2 Selective Labeling for Semi-supervised Learning

Suppose we are given an unlabeled dataset of n instances and an annotation
budget of m. Our task is to select m (m≪ n) instances for labeling, so that a
SSL model trained on such a partially labeled dataset with m instances labeled
produces the best classification performance.

Since we do not have any labels to begin with, our idea is to selectm instances
that are not only representative of most instances, but also diverse to cover
the entire dataset, so that we do not lose information prematurely before label
acquisition. Our SSL pipeline with selective labeling consists of three steps: 1)
unsupervised feature learning; 2) unsupervised instance selection for annotation;
3) SSL on selected labeled data and remaining unlabeled data.

We propose two selective labeling methods in Step 2, training-free Unsuper-
vised Selective Labeling (USL) and the training-based variant (USL-T). With
the former leveraging self-supervised pretrained features [9,12,40] and the latter
jointly optimizes the feature space and clusters, both without label supervision.
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2.1 Unsupervised Selective Labeling (USL)

We study the relationships between data instances using a weighted graph, where
nodes {Vi} denote data instances in the (normalized) feature space {f(xi)} ob-
tained by self-supervised learning methods (e.g. MoCov2 [12], SimCLR [9] or
CLD [40]), and edges between nodes are attached with weights of pairwise fea-
ture similarity [4, 13, 17, 36], defined as 1

Dij
, the inverse of feature distance D:

Dij = ∥f(xi)− f(xj)∥. (1)

Intuitively, the smaller the feature distance, the better the class information can
be transported from labeled nodes to unlabeled nodes. Given a labeling budget
of m instances, we aim to select m instances that are not only similar to others
(representative), but also well dispersed to cover the entire dataset (diverse).

Representativeness: Select Density Peaks. A straightforward approach is
to select well connected nodes to spread semantic information to nearby nodes.
It corresponds to finding a density peak in the feature space. We use a robust
variant of K-nearest neighbor density estimator [19, 30] to measure the repre-
sentativeness and select the nodes with max density, formulated as:

p̂KNN(Vi, k) =
k

n

1

Ad · D̄d(Vi, k)
, where D̄(Vi, k) =

1

k

k∑
j=1

D(Vi, Vj(i)). (2)

where Ad = πd/2/Γ (d2 + 1) is the volume of a unit d-dimensional ball, d the fea-
ture dimension, Γ (x) the Gamma function, k(i) instance i’s kth nearest neighbor.

Diversity: Pick One in Each Cluster. To select m diverse instances that
cover the entire unlabeled dataset, we resort to K-Means clustering that parti-
tions n instances intom(≤n) clusters. Formally, we seekm-way node partitioning
S = {S1, S2, ..., Sm} that minimizes the within-cluster sum of squares [24]:

min
S

m∑
i=1

∑
V ∈Si

∥V −ci∥2 = min
S

m∑
i=1

|Si|Var(Si) (3)

We then pick the most representative instance of each cluster according to Eqn. 2.

Regularization: Inter-cluster Information Exchange. So far we use K-
Means clustering to find m hard clusters, and then choose the representative of
each cluster independently. This last step is sub-optimal, as instances of high
density values could be located along cluster boundaries and close to instances
in adjacent regions (Fig. 3b). We thus apply a regularizer to inform each cluster
of other clusters’ choices and iteratively diversify selected instances (Fig. 3c).

Specifically, let V̂t = {V̂ t
1 , ..., V̂

t
m} denote the set of m instances selected at

iteration t, V̂ t
i for clusters Si, where i ∈ {1, . . . ,m}. For each candidate Vi in

cluster Si, the farther it is away from those in other clusters in V̂t−1, the more
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a) local only b) local + global c) local + global + reg.

Fig. 3: a) Points at density peaks are individually representative of their local
neighborhoods, but lack broad coverage of the entire set. b) Hard constraint by
K-Means greatly depends on clustering quality and only partially alleviates the
problem. c) Soft regularization leads to more uniform and diversified queries.

diversity it creates. We thus minimize the total inverse distance to others in a
regularization loss Reg(Vi, t), with a sensitivity hyperparameter α:

Reg(Vi, t) =
∑

V̂ t−1
j ̸∈Si

1

∥Vi − V̂ t−1
j ∥α

. (4)

This regularizer is updated with an exponential moving average:

Reg(Vi, t) = mreg · Reg(Vi, t−1)+(1−mreg) · Reg(Vi, t) (5)

wheremreg is the momentum. At iteration t, we select instance i of the maximum
regularized utility U ′(Vi, t) within each cluster:

U ′(Vi, t) = U(Vi)− λ · Reg(Vi, t) (6)

where λ is a hyperparameter that balances diversity and individual representa-
tiveness, utility U(Vi) = 1/D̄(Vi, k). In practice, calculating distances between
every candidate and every selected instance in V̂t−1 is no longer feasible for a
large dataset, so we only consider h nearest neighbors in V̂t−1. V̂t at the last
iteration is our final selection for labeling.

2.2 Training-Based Unsupervised Selective Labeling (USL-T)

We also introduce an end-to-end training-based Unsupervised Selective Labeling
(USL-T), an alternative that integrates instance selection into representation
learning and often leads to more label-efficient instance selection.

Global Constraint via Learnable K-Means Clustering. Clustering in a
given feature space is not trivial (Fig. 3c). We introduce a learnable K-Means
clustering that jointly learns both the cluster assignment and the feature space
for unsupervised instance selection.
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Suppose that there are C centroids initialized randomly. For instance x with
feature f(x), we infer one-hot cluster assignment distribution y(x) by finding
the closest learnable centroid ci, i∈{1,. . ., C} based on feature similarity s and
predict a soft cluster assignment ŷ(x) by taking softmax over the similarity
between instance x and each learnable centroid:

yi(x) = [i = arg min
k∈{1,...,C}

s(f(x), ck)], ŷi(x) = softmax(es(f(x),c))i

The hard assignment y(x) can be regarded as pseudo-labels [28, 37, 39]. By
minimizing the KL divergence between soft and hard assignments,DKL(y(x)∥ŷ(x)),
we encourage each instance to become more similar to its centroid and the cen-
troid to become a better representative of instances in the cluster. With soft
predictions, each sample affects on every centroid. For robust training, we only
take pseudo-labels from confident predictions with confidence above τ :

Lglobal({xi}ni=1) =
1

n

∑
max(ŷ(xi))≥τ

DKL(y(xi)∥ŷ(xi)) (7)

where τ is the threshold hyperparameter. This loss leads to curriculum learning
that gradually allows more instances to take part in training.

Local Constraint with Neighbor Cluster Alignment. Since soft assign-
ments usually have low confidence scores for most instances at the beginning,
convergence with global constraint could be very slow and sometimes unattain-
able. We propose an additional local smoothness constraint by assigning an in-
stance to the same cluster of its neighbors’ in the unsupervisedly learned feature
space to prepare confident predictions for the global constraint to take effect.

However, this simple idea as is could lead to two types of collapses: Predicting
one big cluster for all the instances and predicting a soft assignment that is close
to a uniform distribution for each instance.

Therefore, we applied logit adjustment [29] to the output logits to prevent
one-cluster collapse and a sharpening function to prevent even-distribution col-
lapse. Both the logit adjustment and sharpening function can be concisely cap-
tured in a single function P (·) that turns logits z into a reference distribution,
with P̂ (·, ·) the logit adjustment operator and z̄ the moving average of z:

[P (z, z̄, t)]i =
exp(P̂ (zi, z̄i)/t)∑
j exp(P̂ (zj , z̄j/t))

(8)

We now impose our local labeling smoothness constraints with such modified
soft assignments between xi and its randomly selected neighbor x′

i:

Llocal({xi}ni=1) =
1

n

n∑
i=1

DKL(P (y(x′
i), ȳ(x

′
i), t)||ŷ(xi)). (9)

We restrict x′
i to x’s k nearest neighbors, selected according to the unsupervisedly

learned feature prior to training and fixed for simplicity and efficiency.
Our final loss adds up both terms with loss weight λ: L = Lglobal + λLlocal.
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Diverse and Representative Selection in USL-T. Our USL-T is an end-
to-end unsupervised feature learning method that directly outputs m clusters
for selecting m diverse instances. For each cluster, we then select the most rep-
resentative instance, characterized by its highest confidence score, i.e. max ŷ(x).

3 Related Work

Semi-supervised Learning (SSL) integrates information from small-scale la-
beled data and large-scale unlabeled data. Pseudo-labeling [1, 2, 28, 41] obtains
pseudo-labels on unlabeled data from a model’s confident predictions. Trans-
fer learning method SimCLRv2 [10] is a two-stage method that fine-tunes self-
supervised learning models on labeled data. Entropy-minimization [2, 22] as-
sumes that classification boundaries do not pass through high-density area. In-
stead of competing with SSL methods, our USL enables more effective SSL by
choosing the right instances to label for SSL without supervision.

Active Learning (AL) aims to select a subset of data to query labels to achieve
competitive performance over full supervised learning [3, 14, 33]. In Deep AL,
Core-Set [35] approaches data selection as a set cover problem. [18] estimates
distances from decision boundaries based on sensitivity to adversarial attacks.
LLAL [44] predicts target loss of unlabeled data and queries instances with the
largest loss for labels. Semi-supervised AL (SSAL) combines AL with SSL.

Deep Clustering. Methods such as [6,7,11,16,31,39] also jointly learns features
and cluster assignments. However, such methods are often compared against SSL
methods [39], while our work is designed for SSL methods.

4 Experiments

We evaluate our USL and USL-T by integrating them into both pseudo-label
based SSL method FixMatch [37] and transfer-based SSL methods (SimCLRv2/
SimCLRv2-CLD [10, 40]). We also compare against various AL/SSAL methods
and show intriguing generalizability of USL(-T).

CIFAR-10. We compare with mainstream SSL methods FixMatch [37] and
SimCLRv2-CLD [10, 40] on low-label settings (40 labeled samples) to demon-
strate our superior label efficiency. The self-supervised weights used for instance
selection are trained on CIFAR-10 from scratch without external data. The SSL
part is untouched. Our selection leads to 10.2% (11.5%) SSL accuracy improve-
ment combined with FixMatch [37] (SimCLRv2-CLD [10, 40]), compared to se-
lections from AL/SSAL methods (Tab. 2). It is also more balanced (Fig. 4).

ImageNet-1k. On our benchmark on ImageNet [34], we use either MoCov2 [12]
or CLIP [32] features as the first step of our selection. We evaluate on SSL
methods SimCLRv2 and FixMatch with 1% (12, 820 labels) and 0.2% (2, 911
labels) labeled data. Tab. 3 shows that our approach provides up to 14.3% (3.4%)
gains in the 0.2% (1%) SSL setting.
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CIFAR-10 S.v2-CLD FixMatch

Random Selection 60.8 82.9
Stratified Selection† 66.5 88.6
UncertainGCN 63.0 77.3
CoreGCN 62.9 72.9
MMA+‡ 60.2 71.3
TOD-Semi 65.1 83.3
USL (Ours) 76.6 ↑11.5 90.4 ↑7.1
USL-T (Ours) 76.1 ↑11.0 93.5 ↑10.2

Table 2: The samples selected by USL and USL-
T greatly outperform the ones from AL/SSAL
on [10, 37, 40], with a budget of 40 labels on
CIFAR-10. ‡: MMA+ is our improved MMA
[38] based on FixMatch. †: not a fair baseline.

1 2 3 4 5 6 7 8 9 10
Ranked Class Index
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Fig. 4: Comparisons on the se-
mantic class distributions of
several methods over 3 runs.
USL and USL-T get more bal-
anced distribution.

SimCLRv2 FixMatch
ImageNet-1k 1% 0.20% 1% 0.20%
Random 49.7 33.2 58.8 34.3
Stratified† 52.0 36.4 60.9∗ 41.1
USL-MoCo (Ours) 51.5 ↑1.8 39.8 ↑6.6 61.6 ↑2.8 48.6 ↑14.3
USL-CLIP (Ours) 52.6 ↑2.9 40.4 ↑7.2 62.2 ↑3.4 47.5 ↑13.2

Table 3: Our proposed methods scale well on large-scale dataset ImageNet [34].
∗: reported in [5]. USL-MoCo and USL-CLIP use MoCov2 features and CLIP
features, respectively, to perform selective labeling. †: not a fair comparison.

4.1 Strong Generalizability

Cross-dataset Generalizability with CLIP. Since CLIP does not use Ima-
geNet samples in training and the downstream SSL task is not exposed to the
CLIP model either, USL-CLIP’s result shows strong cross-dataset generalizabil-
ity in Tab. 3. It means that: 1) When a new dataset is collected, we could use
a general multi-modal model to skip self-supervised pretraining; 2) Unlike AL
where sample selection is strictly coupled with model training, our annotated
instances work universally rather than with only the model used to select them.

Cross-domain Generalizability. Such generalizability holds across domains.
We use a CLD model trained on CIFAR-10 to select 40 labeled instances in med-
ical imaging dataset BloodMNIST [43]. Random selections, stratified selections,
and USL selections obtain 77.17%, 80.46%, and 88.06% accuracy, respectively.
Although our model has not been trained on any medical images, our model with
FixMatch performs 10.9% (7.6%) better than random (stratified) sampling.

5 Summary

Unlike existing SSL methods that improve models and training algorithms, USL
is the first to focus on unsupervised data selection for labeling and enable more
effective subsequent SSL. By choosing a diverse representative set of instances for
annotation, we show significant gains in annotation efficiency and downstream
accuracy, with remarkable selection generalizability within and across domains.
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