
ViperGPT: Visual Inference via Python Execution for Reasoning

Dídac Surís*, Sachit Menon*, Carl Vondrick
Columbia University

viper.cs.columbia.edu

Abstract

Answering visual queries is a complex task that requires
both visual processing and reasoning. End-to-end models,
the dominant approach for this task, do not explicitly differ-
entiate between the two, limiting interpretability and gener-
alization. Learning modular programs presents a promising
alternative, but has proven challenging due to the difficulty
of learning both the programs and modules simultaneously.
We introduce ViperGPT, a framework that leverages code-
generation models to compose vision-and-language models
into subroutines to produce a result for any query. ViperGPT
utilizes a provided API to access the available modules, and
composes them by generating Python code that is later ex-
ecuted. This simple approach requires no further training,
and achieves state-of-the-art results across various complex
visual tasks.

1. Introduction
How many muffins can each kid in Figure 1 (top) eat for

it to be fair? To answer this, we might 1) find the children
and the muffins in the image, 2) count how many there are
of each, and 3) reason that ‘fair’ implies an even split, hence
divide. People find it natural to compositionally combine
individual steps together to understand the visual world.
Yet, the dominant approach in the field of computer vision
remains end-to-end models, which do not inherently lever-
age this compositional reasoning.

Although the field has made large progress on individual
tasks such as object recognition and depth estimation, end-
to-end approaches to complex tasks must learn to implicitly
perform all tasks within the forward pass of a neural net-
work. Not only does this fail to make use of the advances
in fundamental vision tasks at different steps, it does not
make use of the fact that computers can perform mathemat-
ical operations (e.g., division) easily without machine learn-
ing. We cannot trust neural models to generalize system-
atically to different numbers of muffins or children. End-
to-end models also produce fundamentally uninterpretable
decisions – there is no way to audit the result of each step
to diagnose failure. As models grow increasingly data and

*Equal contribution. Order determined via coin flip and may be listed
either way.

compute-hungry, this approach grows increasingly unten-
able. We would like to perform new tasks without additional
training by recombining our existing models in new ways.

In this work, we present ViperGPT1, a framework that
overcomes these bottlenecks by leveraging code generat-
ing large language models (e.g. GPT-3 Codex [5]) to flexi-
bly compose vision models based on any textual query that
defines the task. It creates customized programs for each
query that take images or videos as argument and return the
result of the query for that image or video. We show that
providing Codex an API exposing various visual capabili-
ties (e.g. find, compute_depth), just as one might provide
an engineer, is sufficient for the creation of these programs.
The model’s prior training on code enables it to reason
about how to use these functions and implement the relevant
logic. Our results demonstrate that this simple approach de-
livers remarkable zero-shot performance (i.e. without ever
training on task specific images).

Our simple approach enjoys many benefits: it is 1) inter-
pretable, as all intermediate values can be inspected; 2) log-
ical, explicitly using built-in Python logical and mathemat-
ical operators; 3) flexible, as it can easily incorporate any
vision or language module; 4) compositional, decompos-
ing tasks into smaller sub-tasks performed step-by-step; 5)
adaptable to advances in the field, as improvements in any
of the used modules improve the system; 6) training-free;
and finally, 7) general, as it unifies all tasks into one system.

In summary: we propose a simple framework for solv-
ing complex visual queries by integrating code-generation
models into vision with an API and the Python interpreter;
and we achieve state-of-the-art zero-shot results across
tasks in visual grounding, image question answering, and
video question-answering, showing this interpretability aids
performance rather than hindering it.

2. Related Work
We discuss related works briefly due to space limitations

in this extended abstract. We take inspiration from Neu-
ral Module Networks [1, 15], who argue that complex vi-
sion tasks are fundamentally compositional and propose di-
viding them into atomic perceptual units. Over the course

1We name our method after a snake because it executes Python code.
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Query: What color do you get if you combine the colors of the viper and the flower?

Result:“purple”

► viper_color=‘blue’
► flower_color=‘red’
► color=‘purple’

► viper_patch=

► flower_patch=

Query: Tell me about the competition between the two skyscrapers in the image.

► skyscraper_1_name=‘chrysler building’
► skyscraper_2_name=‘empire state building’

skyscraper_patches =

def execute_command(image):
    image_patch = ImagePatch(image)
    viper_patches = image_patch.find("viper")
    flower_patches = image_patch.find("flower")
    viper_patch = viper_patches[0]
    flower_patch = flower_patches[0]
    viper_color = viper_patch.simple_query("What color is the viper?")
    flower_color = flower_patch.simple_query("What color is the flower?")
    color = llm_query(f"What color do you get if you combine the colors 
      {viper_color} and {flower_color}?")
    return color

def execute_command(image):
    image_patch = ImagePatch(image)
    skyscraper_patches = image_patch.find("skyscraper")
    skyscraper_patch_1 = skyscraper_patches[0]
    skyscraper_patch_2 = skyscraper_patches[1]
    skyscraper_1_name = skyscraper_patch_1.simple_query("What is the name of this skyscraper?")
    skyscraper_2_name = skyscraper_patch_2.simple_query("What is the name of this skyscraper?")
    return llm_query(f"Tell me about the competition between {skyscraper_1_name} and {skyscraper_2_name}")

Query: How many muffins can each kid have for it to be fair? Execution

Result:4

► len(muffin_patches)=8
► len(kid_patches)=2

► 8//2 = 4

kid_patches = 
image_patch.find(”kid”)

muffin_patches = 
image_patch.find(”muffin”)

def execute_command(image):
    image_patch = ImagePatch(image)
    muffin_patches = image_patch.find("muffin")
    kid_patches = image_patch.find("kid")
    return str(len(muffin_patches) // len(kid_patches))

Query: What would the founder of the brand of the car on the left say to the founder of the brand of the car on the right?

Result:“Ferruccio Lamborghini might say, ‘It’s been an honor to be a rival of yours for so many years, Enzo. 
May our cars continue to push each other to be better and faster!’ ” 

► left_car_founder=‘Ferruccio Lamborghini’
► right_car_founder=‘Enzo Ferrari’

car_patches = 
image_patch.find("car")

,
► left_car_brand=‘lamborghini’
► right_car_brand=‘ferrari’

car_patches.sort(...)

,

def execute_command(image):
     image_patch = ImagePatch(image)
    car_patches = image_patch.find("car")
    car_patches.sort(key=lambda car: car.horizontal_center)
    left_car = car_patches[0]
    right_car = car_patches[-1]
    left_car_brand = left_car.simple_query("What is the brand of this car?")
    right_car_brand = right_car.simple_query("What is the brand of this car?")
    left_car_founder = llm_query(f"Who is the founder of {left_car_brand}?")
    right_car_founder = llm_query(f"Who is the founder of {right_car_brand}?")
    return llm_query(f"What would {left_car_founder} say to {right_car_founder}?")

Result:“The competition between the Chrysler Building and the Empire State Building is one of the most famous rivalries in the 
history of architecture. Built in the 1930s in New York City, the two skyscrapers were the tallest buildings in the world for a time. The
Chrysler Building, designed by William Van Alen and completed in 1930, was the first to reach a height of 1,046 feet, temporarily ...” 

Query: Return the two kids that are furthest from the woman right before she hugs the girl
def execute_command(video):
    video_segment = VideoSegment(video)
    hug_detected = False
    for i, frame in enumerate(video_segment.frame_iterator()):
        if frame.exists("woman") and frame.exists("girl") and \
                frame.simple_query("Is the woman hugging the girl?") == "yes":
            hug_detected = True
            break
    if hug_detected:
        index_frame = i - 1
    frame_of_interest = ImagePatch(video_segment, index_frame)
    woman_patches = frame_of_interest.find("woman")
    woman_patch = woman_patches[0]
    kid_patches = frame_of_interest.find("kid")
    kid_patches.sort(key=lambda kid: distance(kid, woman_patch))
    kid_patch_1 = kid_patches[-1]
    kid_patch_2 = kid_patches[-2]
    return [kid_patch_1, kid_patch_2]

► hug_detected=True
► frame=

► frame_of_interest=

► kid_patches=

Result:

► kid_patches=
sort(...distance...)

Generated Code

Query: Drink with zero alcohol

► drink_name = ‘gin’
► alcoholic = ‘yes’

► drink_name = ‘tullamore dew’
► alcoholic = ‘yes’

► drink_name = ‘bacardi’
► alcoholic = ‘yes’

► drink_name = ‘dr pepper’
► alcoholic = ‘no’

► drink_patches=

Result:
def execute_command(image):
    image_patch = ImagePatch(image)
    drink_patches = image_patch.find("drink")
    for drink_patch in drink_patches:
        drink_name = drink_patch.simple_query("What is this?")
        alcoholic = llm_query(f"Does the {drink_name} have alcohol?")
        if alcoholic == "no":
            return drink_patch
    return None

Figure 1. In-the-wild results. Given a visual input and a query, ViperGPT synthesizes a program, then executes it with the Python
interpreter in order to produce the final answer. This figure shows both the generated code, and the result of intermediate variables during
the execution. By composing pretrained modules, ViperGPT obtains answers that are both correct and interpretable for open-world queries.



of this project, a surge of interest has resulted in a number
of related manuscripts appearing on arXiv using LLMs for
module integration. In NLP, they have been aimed at us-
ing external tools [19,23], or for structured reasoning using
Codex [6, 7, 9, 17, 28]. Concurrent work [11] generates a
list of pseudocode instructions and interprets them as a ‘vi-
sual program,’ relying on in-context learning from provided
examples. Unlike them, we directly generate unrestricted
Python code, which is much more flexible and enables us
to demonstrate more advanced emergent abilities, such as
control flow and math. Crucially, using Python allows us to
leverage the strong prior knowledge Codex learns by train-
ing at scale from the Internet. Additionally, we evaluate on
many established benchmarks measuring visual understand-
ing and achieve top-performing zero-shot results.

3. Method
We use notation following Johnson et al. [15]. Given a

visual input x and a textual query q about its contents, we
first synthesize a program z = π(q) with a program gener-
ator π given the query. We then apply the execution engine
r = ϕ(x, z) to execute the program z on the input x and pro-
duce a result r. Our framework is flexible, supporting image
or videos as inputs x, questions or descriptions as queries q,
and any type (e.g., text or image crops) as outputs r.

3.1. Program Generation

Johnson et al. [15] and other work in this direction [12,
14, 31] typically implement π with a neural network that is
trained with either supervised or reinforcement learning in
order to estimate programs from queries. However, these
approaches have largely been unable to scale to in-the-wild
settings because either a) the supervision in the form of pro-
grams cannot be collected at scale or b) the optimization re-
quired for finding the computational graph is prohibitive.

In our approach, we instead capitalize on LLMs for
code generation in order to instantiate the program gen-
erator π that composes vision and language modules to-
gether. LLMs take as input a tokenized code sequence
(“prompt”) and autoregressively predict subsequent tokens.
We use Codex [5], which has shown remarkable success
on code generation tasks. Since we replace the optimiza-
tion of π with an LLM, our approach obviates the need for
task-specific training for program generation. Using Codex
as the program generator and generating code directly in
Python allows us to draw on training at scale on the Inter-
net, where Python code is abundant.

To leverage LLMs in this way, we need to define a
prompt that will sample programs z that compose and call
these modules as needed. Our prompt consists of an appli-
cation programming interface (API), detailed in the follow-
ing section, which we provide to the LLM as part of its in-
put context. The final input to the LLM is a sequence of

code text consisting of the API specification followed by
the query for the sample under consideration. The expected
output is a Python function definition as a string, which we
then compile and execute.

3.2. Modules and Their API

The API we provide defines two global classes
ImagePatch and VideoSegment, which represent an image
patch and a video segment respectively. Each module is im-
plemented as a class method, which internally calls a pre-
trained model to compute the result. The API specifies the
input and output types for each method it defines, as well as
docstrings to explain the purpose of these functions in nat-
ural language. Like most APIs, it additionally provides ex-
amples that show how to use these classes and their func-
tions, specified in the form of query-code pairs similarly to
in-context learning [3, 25].

3.3. Program Execution

At execution time, the generated program z accepts an
image or video as input and outputs a result r correspond-
ing to the query provided to the LLM. To execute this pro-
gram, previous work (e.g., [15]) learns all neural modules
together simultaneously end-to-end, which fails to enable
systematic generalization [2] and results in modules that are
not faithful to their intended tasks [24], compromising the
interpretability of the model.

The program is run with the Python interpreter; as such,
its execution is a simple Python call. This means it can
leverage all built-in Python functions like sort; control flow
tools like for or if/else; and modules such as datetime

or math. The Python interpreter enables logical operations
while the pretrained models enable perceptual ones. Our
approach guarantees faithfulness by construction. Notably,
this does not require a custom interpreter, unlike prior ap-
proaches [11,23] Another advantage of a fully Pythonic im-
plementation is compatibility with a wide range of existing
tools, such as PyTorch JIT [20].

4. Evaluation

ViperGPT is applicable to any tasks that query visual in-
puts with text. Unlike other work using large language mod-
els for vision tasks, the return values of our programs can
be of arbitrary types, such as text, multiple choice selec-
tions, or image regions. We select four different evalua-
tion settings to showcase the model’s diverse capabilities in
varied contexts without additional training. We evaluate on
tasks we consider to build on each other: 1) visual ground-
ing, 2) compositional image question answering, 3) exter-
nal knowledge-dependent image question answering, and 4)
video causal and temporal reasoning.



Table 1. Comparison of our method with state-of-the-art models on various tasks.

RefCOCO Results GQA Results OK-VQA Results NExT-QA Results

RefCOCO RefCOCO+ Accuracy Accuracy Hard Split - T Hard Split - C Full Set

Su
p. MDETR [27] 90.4 85.5 LGCN [13] 55.8 TRiG [8] 50.5 ATP [4] 45.3 43.3 54.3

OFA [27] 94.0 91.7 LXMERT [26] 60.0 KAT [10] 54.4 HiTeA [30] 48.6 47.8 63.1

Z
S

OWL-ViT 30.3 29.4 PICa 43.3
GLIP 55.0 52.2 FewVLM 29.3 BLIP-2 45.9
ReCLIP 58.6 60.5 BLIP-2 44.7 Flamingo 50.6
ViperGPT (ours) 72.0 67.0 ViperGPT (ours) 48.1 ViperGPT (ours) 51.9 ViperGPT (ours) 49.8 56.4 60.0

4.1. Visual Grounding

Visual grounding is the task of identifying the bounding
box in an image that best matches a text query, requiring
spatial reasoning and visual attribute understanding.

We provide ViperGPT with APIs for the following mod-
ules (pretrained models in parentheses): find (GLIP [16])
takes an image and a noun phrase, returning a list of im-
age patches containing the noun phrase; exists (GLIP [16])
takes an image and a noun phrase, returning a boolean
indicating the presence of the noun phrase in the image;
verify_property (X-VLM [32]) takes an image, a noun
phrase, and an attribute, returning a boolean indicating the
presence of the property in the image; best_image_match
(X-VLM [32]) takes a list of image patches and a noun phrase,
returning the best-matching image patch; best_text_match
takes a list of noun phrases and an image, returning the best-
matching noun phrase (not necessary for visual grounding,
but included for simplicity), implemented using an image-
text similarity model like CLIP [21]; and compute_depth

(MiDaS [22]) computes the median depth of an image patch.
We also define distance, computing pixel-distance be-
tween two patches using built-in Python tools.

We evaluate using RefCOCO and RefCOCO+ datasets,
with the former allowing spatial relations and the latter not,
offering insights into ViperGPT’s capabilities. We compare
ViperGPT against end-to-end methods, outperforming other
zero-shot methods on both datasets (see Table 1).

4.2. Compositional Image Question Answering

We evaluate ViperGPT on image question answering, fo-
cusing on compositional tasks using the GQA dataset. Pro-
viding intermediate reasoning is more interpretable and
human-aligned; as our final result is constructed directly
from the intermediate values, they provide a fully faithful
interpretation of how the model came to its answer..

For GQA, we incorporate the module simple_query

(BLIP-2 [16]), which handles basic queries that are not further
decomposable, such as “What animal is this?” We also add
the aforementioned best_text_match. This leads us to the
best accuracy on GQA among zero-shot models (Table 1).

4.3. External Knowledge-dependent Image Ques-
tion Answering

Integrating external knowledge about the world is cru-
cial for answering many image-related questions. We equip
ViperGPT with a natural language module to query external
knowledge bases, llm_query (GPT-3 [3]), enabling it to com-
bine knowledge with visual reasoning.

We assess ViperGPT on the OK-VQA dataset [18], de-
signed to evaluate models’ abilities to answer questions re-
quiring extrinsic knowledge. This dataset often involves
multi-step reasoning to produce correct answers. By using
a form of chain-of-thought reasoning [29], ViperGPT uses
perceived information and the external knowledge module
to generate accurate responses.
ViperGPT outperforms all zero-shot methods and sur-

passes the best previous model using publicly available
resources by 6% (Table 1), a significant margin for this
dataset.

4.4. Video Causal/Temporal Reasoning

We also evaluate how ViperGPT extends to videos and
queries that require causal and temporal reasoning. To ex-
plore this, we use the NExT-QA dataset, designed to evalu-
ate video models ability to perform this type of reasoning.
We evaluate using the NExT-QA multiple choice version.

We provide an additional module select_answer

(GPT-3 [3]), which, given textual information about a scene
and a list of possible answers, returns the answer that
best fits the information. Other than that, the only addi-
tional content given in the API is the definition of the class
VideoSegment, that contains the video bytestream as well
as the start and end timestamps of the video segment that it
represents. It also defines an iterator over the frames, which
returns an ImagePatch object representing every frame.

Despite only having image perception modules,
ViperGPT demonstrates emergent causal and temporal rea-
soning in videos, generating programs that identify relevant
frames for queries and producing accurate results. Its accu-
racy is on par with, or even surpasses, supervised models
for temporal (T) and causal (C) reasoning in Table 1, and
incorporating video models could potentially enhance per-
formance further.
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