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Abstract
Recent advances in zero-shot image recognition suggest

that vision-language models learn generic visual representa-

tions with a high degree of semantic information that may

be arbitrarily probed with natural language phrases. Under-

standing an image, however, is not just about understanding

what content resides within an image, but importantly, where

that content resides. In this work we examine how well vision-

language models are able to understand where objects reside

within an image and group together visually related parts

of the imagery. We demonstrate how contemporary vision

and language representation learning models based on con-

trastive losses and large web-based data capture limited

object localization information. We propose a minimal set of

modifications that results in models that uniquely learn both

semantic and spatial information. We measure this perfor-

mance in terms of zero-shot image recognition, unsupervised

bottom-up and top-down semantic segmentations, as well

as robustness analyses. We find that the resulting model

achieves state-of-the-art results in terms of unsupervised

segmentation, and demonstrate that the learned representa-

tions are uniquely robust to spurious correlations in datasets

designed to probe the causal behavior of vision models.

1. Introduction
Recent vision-language models trained under weak su-

pervision demonstrate a remarkable ability to learn generic
and transferable visual representations [21, 43, 68, 95], but
showcase a profound inability to associate visual content
with individual objects (Fig. 1, bottom row). In other words,
models trained on large weakly-supervised data have a lim-
ited ability to group together visually related content [31].
Because the representations have a poor understanding of
where an object resides, they easily conflate background
with foreground content. Hence, the learned representations
are unable to learn the spatial layout of a scene [77, 80], and
are susceptible to learning spurious correlations between a
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Figure 1. Semantic localization in vision-language models. We
measure the ability of vision-language models to predict a label at
each spatial position in a zero shot manner based on the similarity
of location tokens to the corresponding language tokens on selected
examples. CLIP / ALIGN [43, 68] have minimal understanding of
the spatial location of individual objects (row 4). Our proposed
CLIPpy (row 3) predicts the label at locations that correspond
closely to human annotation for semantic segmentation (row 2).
All predictions were performed with no access to any segmentation
data during training or inference. More visualizations in App. B.

semantic label and extraneous content [55, 73].
Recent work [91, 92] attempts to bridge this gap through

grouping mechanisms under the same weakly supervised
training paradigm, but focus more on foreground objects
(neglecting background classes). Another direction is task
specific unsupervised fine-tuning [23, 103] which loses the
generic and transferable nature of these representations.

In this work, we explore vision-language models that
learn from similar weakly labeled data, but a) retain the
generic and transferable nature of features, and b) learns
where all (background & foreground) visual content re-
sides within an image. Unlike previous works using group-
ing specific architectures [91, 92] or dense human annota-
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Figure 2. Architecture diagram. We demonstrate that two minimal design decisions
(indicated in green) are of paramount importance for CLIP [68] models to perform
perceptual grouping under image-level weak supervision.

Component CLIP [68] CLIP† CLIPpy

Image Backbone ViT-B/16 ViT-B/16 ViT-B/16
Text Backbone T-B T-5 T-5
Image Init Random Random DINO
Text Init Random Random Sent T-5
Image Pooling CLS CLS Max
Text Pooling Avg Avg Avg
Dataset 300M⇤ CC-12M CC-12M
VOC mIoU (%) 16.4 17.5 50.8 (+33.3)
VOC JS (%) 28.6 37.3 47.5 (+10.2)

Figure 3. We highlight CLIPy differences from CLIP.
CLIP† is our implementation following train settings
identical to CLIPpy. ⇤indicates OpenAI private data.

tions [31, 33, 48], we explore a minimal set of modifications
to existing CLIP models [68] that leads to visual grouping
while retaining their weakly supervised and scalable training
procedure. We find that two small adjustments – employing
specific pretraining strategies and adjusting spatial feature
aggregation – results in models that are equally effective in
zero-shot image recognition, but also retain spatial informa-
tion regarding object locations (see Fig. 1, 3rd row).

The resulting model termed CLIPpy exhibits perceptual

grouping: ability to select and combine related visual signals
into semantically meaningful regions [60, 72, 89]. Endowing
models with perceptual grouping – whether in a bottom up
(based solely on visual content) or top down (guided by exter-
nal information, language in this case) manner – in learned
representations has been a long standing goal in computer
vision [58,59]. Further, this emergence of localization ability
uniquely leads to robustness to counterfactual manipulations.

2. Methodology
Our work builds on CLIP [68], introducing two key mod-

ifications that emerge grouping behavior: alternate aggre-
gation options and pre-training strategies (Fig. 2). Training
uses the same contrastive objective under weak supervision.

2.1. Aggregation
The goal of aggregation is to collapse the image embed-

ding from [H,W,D] to D dimension. Average pooling
across space is an established technique to obtain a final em-
bedding independent of image resolution [57, 78]. Another
approach for ViT is class token (CLS), which learns an
aggregated embedding from patch tokens. In this work we
systematically explore these aggregation strategies to find
that the application of maximum pooling across the spatial
dimensions – while extremely simple – is also by far most
effective (Tab. 4). We hypothesize that this may be due to
gradient updates being focused solely on a single spatial
location, and not spread across all spatial dimensions.

2.2. Pretraining
Language Model. For better sentence level representa-

tion, we utilize pre-training from Sentence-T5 [64], selected

over auto-regressive models [6, 22] because their contrastive
loss is aligned to our setup.

Image Model. We investigate using supervised and self-
supervised ( [10]) pre-training strategies. We focus on the
latter direction due to impressive localization performance
of those features [10, 36]. The visual encoder represen-
tation space can be viewed as containing per-image fea-
tures (post-aggregation) vs per-spatial location features (pre-
aggregation). We hypothesize that semantics tied boundaries
of this representation space should operate at the latter gran-
ularity to induce perceptual grouping. Furthermore, we sug-
gest that initializations facilitating the former will detriment
grouping behaviour. In particular, visual pre-training strate-
gies separating image-level representations by semantics (e.g.
supervised ImageNet pre-training) will diminish perceptual
grouping. Self-supervised pre-training strategies focused
on more granular within image representations (e.g. [10])
will tend to enhance perceptual grouping. This hypothesis is
empirically validated in ablations (see Table 4).

2.3. Visual Token Sub-Sampling

Motivated by vision transformers’ ability to process se-
quences of length different to train time, we generate higher
resolution segmentations during inference by sampling more
image patches. In order to increase robustness to such vary-
ing resolution, we utilize up to 2⇥ higher resolution images
during training but randomly drop 80% of visual tokens to
minimize additional compute overhead (similar to [38, 52]).
While improving inference quality, this also provides train-
ing stability possibly due to its regularization effect (see App.
E for more details).

2.4. Inference

Classification and top-down grouping follows zero-shot
analyses from [68] (see App. I) with latter doing at each
patch similar to [30] . Bottom-up grouping follows analysis
in DINO demos [10]. PCA on image features (from visual
encoder pre-aggregation) gives top n (=8) principal compo-
nents, used as cluster centers. Each same image feature is
assigned to one of these n clusters based on proximity (cosine
similarity) to the centers resulting in n clusters (groups).



Dataset IN IN-v2

ALIGN [43] ALIGN-1800M 76.4 70.1

CLIP [68] CLIP-400M 65.5 60.8

CLIP † CC-12M 46.0 40.3

GroupViT [91] CC-12M+YFCC 42.9 -

GroupViT † CC-12M 25.6 23.8

CLIPpy CC-12M 45.3 40.0

ALIGN † HQITP-134M 51.1 45.6

CLIP † HQITP-134M 61.4 56.4

CLIPpy HQITP-134M 60.3 54.8

Table 1. CLIPpy achieves competitive zero-shot image recogni-
tion. IN and IN-v2 denote ImageNet and ImageNet-v2 accuracy,
respectively. † indicates our implementation. [43] evaluated at
640⇥640; others evaluated at 224⇥224. CLIPpy shows ±0.5 and
±0.9 IN acc. (5 runs) on CC-12M and HQITP-134M, respectively.

Dataset Train VOC
MoCo [91]

ImageNet

self 28.2
DINO [10] self 45.9
DSM [61] self 37.2

COMUS [97] self 47.3
DINO [91]

CC-12M &
YFCC-100M

self 41.8
CLIP [91] text 28.6

GroupViT [91] text 51.8
CLIP †

CC-12M
text 37.3

GroupViT † text 42.8 (+5.5)

CLIPpy text 47.5 (+10.2)

CLIP †
HQITP-134M

text 38.9
CLIPpy text 54.6 (+15.7)

Table 2. CLIPpy effectively performs bottom-up grouping. We
report Jaccard Similarity, an instance average of the IoU between
proposed and annotated segmentations, independent of the object
label. † denotes our implementation.

arch dataset ADE20K COCO VOC COCO (obj)
GroupViT † [91] ViT

CC-12M

6.2 12.7 40.1 17.5
MaskCLIP † [103] ViT 6.8 8.1 22.1 13.8

OVS [92] ViT 7.1 - 44.6 25.1
CLIP † ViT 5.0 7.8 17.5 13.2

CLIPpy ViT 13.1 (+8.1) 23.8 (+16.0) 50.8 (+33.3) 28.5 (+15.3)

ALIGN [30] CNN ALIGN-1800M 9.7 15.6 - -
CLIP [68] ViT CLIP-400M 5.8 8.7 16.4 -

ALIGN † CNN
HQITP-134M

7.5 14.4 29.7 -
CLIP † ViT 5.1 8.0 18.1 -

CLIPpy ViT 13.5 (+8.4) 25.5 (+17.5) 52.2 (+34.1) 32.0

Table 3. CLIPpy provides compet-
itive top-down grouping (semantic
segmentation) with no segmentation
or location annotations. All models
trained without any segmentation an-
notations. Results grouped by train-
ing dataset (bold highlights best per
dataset). Numbers are mean IoU. † in-
dicates our implementation.

3. Experiments
Experimental Setup. We train our models on two

datasets: Conceptual Captions 12M (CC-12M) [11] and
High Quality Image Text Pairs (HQITP-134M) consisting
of 12 million and 134 million image-text pairs, respectively
(App. C for details). More training details in App. E.

We first measure performance of CLIP [68] and ALIGN
[43] on zero-shot image classification on ImageNet and
ImageNet-v2. Table 1 highlights these results. In the fol-
lowing experiments we attempt to address the following
questions:

• Limitations of current vision-language models?
• Do we observe perceptual grouping in these models?

(Tabs. 2 and 3).
• How resilient are they to counterfactual manipulations?

(Fig. 5).
Finally, we report ablations on each component in Tab. 4.

3.1. Limitations of vision-language models
Visual representations learned in vision-language mod-

els exhibit an impressive ability to generalize across tasks
[43,68]. However they also exhibit a profound shortcoming –
learned visual representations maintain minimal information
about where an object resides, failing to properly recognize
what parts of an image constitute an object. Fig. 1 (bottom

row) showcases failure of a CLIP model; namely, the model
improperly conflates visual content not associated with an
object with the actual object. One consistently observes the
central object of interest being incorrectly predicted to reside
at every spatial location. This failure of vision-language
models to properly understand spatial organization of infor-
mation is consistent with earlier observations [63, 77, 99].

In contrast, if we perform the same analysis on CLIPpy,
we see that the model retains significant information about
spatial information (Fig. 1, 3rd row). We take these visual-
izations as an impetus for further investigation.

3.2. Emergence of Bottom-Up Grouping

Unsupervised segmentation performance is a direct mea-
sure of bottom up perceptual grouping. We apply CLIPpy
at test time to perform segmentation without prompting for
any labels. Fig. 4 shows how image embeddings naturally
group into spatially distinct clusters mirroring the image
structure. We emphasize that this analysis does not rely on
text prompts nor segmentation labels, but merely emerges
from the image features alone. Hence the model has learned
to group perceptually related pixels merely based on the
pixel content and image-level captions during training. We
quantify the accuracy of this bottom-up segmentation using
Jaccard Index [10, 91], and show results in Tab. 2. Our intu-



Figure 4. Visualizations of bottom-up grouping by CLIPpy.
Each color represents one grouping learned on a given image.

ition is that CLS and average pooling breaks spatial structure
of features and mixes image-level features across features at
all spatial locations unlike in CLIPpy, leading to observed
better bottom-up grouping.

3.3. Emergence of Top-down Grouping

We next measure top-down grouping ability with zero-
shot semantic segmentation. Fig. 1 visualizes predicted zero-
shot segmentations and Tab. 3 quantifies these results using
mean intersection over union (mIoU). CLIPpy outperforms
all other approaches on semantic segmentation when trained
on the same datasets, both for CC-12M and HQITP-134M.
GroupViT [91] and OVS [92] containing grouping specific
architectures and pre-training strategies provide important
points of comparison. CLIPpy obtains clear performance
improvements over these methods across all datasets.

3.4. Perceptual grouping may improve robustness

We next explore how observed perceptual grouping could
improve robustness of image understanding. The synthetic
benchmark is Waterbirds [73] places segmented birds over
land or water background posing a two-way classifica-
tion task of whether a bird belongs to the waterbird or
landbird category. What makes this problem particularly
challenging is when the background is not commensurate
with the type of bird (e.i. landbird in water background).

We evaluate CLIPpy and a baseline CLIP model and re-
port results in Fig. 5. Given the structured outputs from
grouping, we perform a specialized inference procedure
(App. H for details). For the CLIP baseline, model per-
formance depends heavily on the background (� column),
indicating reliance on background features for prediction.
Meanwhile, CLIPpy, while still susceptible to some spurious
correlations, is far more robust than baseline CLIP. As points
of comparison, all prior work train a supervised model on
the training split. In contrast, our predictions are zero-shot,
and we do not use the training set. That said, the best su-
pervised training methods achieve a domain gap � of 4% to
8% [55], comparable to our results. We take these results to
indicate that our zero-shot approach leveraging perceptual
grouping provides another approach for addressing spurious
correlations and learning robust image features.

CLIP water land �
waterbird 80.2 48.1 -32.1
landbird 38.8 71.7 -32.9

CLIPpy water land �
waterbird 76.9 74.9 -2.0
landbird 80.0 84.1 -4.1

Figure 5. Perceptual grouping mitigates sensitivity to spurious
correlations. (left) Selected segmentation examples by CLIPpy of
waterbirds and landbirds on each background. (right) Accuracy on
the test split (5794 examples) of Waterbirds on CLIP and CLIPpy
evaluated at 448⇥448 resolution. The domain gap � reports the
drop in accuracy between on and off diagonal entries within a row.

I-P I-F T-F IN VOC

Cls 3 7 39.9 3.4
Max 3 7 24.2 10.4
Max 7 3 35.9 29.5
Max 7 7 42.3 50.8

Aggreg. ImageNet Pascal VOC
Accuracy mIoU Jaccard

Max 42.3 50.8 47.5
Avg 44.0 11.6 38.1
Cls 46.0 4.0 40.4

Table 4. Ablation studies: (left) Freezing pre-trained backbones.
I-P for image backbone pooling, I-F for image backbone frozen,
and T-F for text backbone frozen. Top-1 accuracy (%) for ImageNet
(IN) and mean IoU for VOC reported. (right) Aggregation methods:
max pooling (Max), average pooling (Avg), and class token (Cls).
All models initialized with the same pre-trained features.

4. Discussion
In this work we demonstrate how contrastive vision-

language models have a profound lack of understanding
object location. We described a minimal set of changes to
existing models - modifying the aggregation method and
introducing optimal pre-training strategies - to endow the
model with both bottom-up and top-down perceptual group-
ing. We emphasize that our changes are minimal but suffi-
cient to match if not exceed the performance of custom-built
architectures [91, 92] in achieving perceptual grouping.

We establish how our resulting model provides state-of-
the-art results in terms of both bottom-up and top-down
grouping – even though the model has been afforded no

segmentation annotations whatsoever. Finally, we demon-
strate the utility of these representations by demonstrating
how perceptual grouping may be leveraged to learn visual
features that are robust to spurious correlations.

We take these results to indicate that contrastive vision-
language models may provide the emergence of perceptual
grouping without supervision. We do see limitations in this
approach as segmentation suffers with increasing visual clut-
ter and label cardinality (e.g. ADE-20K). We suspect that re-
cent advent of larger-scale open datasets [8,74] and advanced
in self-supervised learning [36, 61] may offer opportunities
to demonstrate further benefits for endowing models with
perceptual grouping. We also note the possibility of biases
in our training data that may be reflected in our models. We
highlight how all reported numbers contain an equivalent
version on CC-12M only to enable reproducibility.
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