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Abstract

In Test Time Adaptation (TTA), given a source model,
the goal is to adapt it to make better predictions for test
instances from a different distribution than the source. Cru-
cially, TTA assumes no access to the source data or even any
additional labeled/unlabeled samples from the target distri-
bution. In this work, we consider TTA in a more pragmatic
setting which we refer to as SITA (Single Image Test-time
Adaptation). Here, when making a prediction, the model has
access only to the given single test instance, rather than a
batch of instances, the latter being typically considered in
the literature. This is motivated by the real scenarios where
inference is needed on-demand instead of delaying for an
incoming batch, or the inference is needed on an edge device
(like mobile phones) where there is no scope for batching.
The entire adaptation process in SITA should be extremely
fast, as it happens at inference time. To address this, we pro-
pose a novel approach that requires only a single forward
pass. There are two key components to our adaptation pro-
cess: 1. estimating the normalization parameters from only
a single test instance using label-preserving transformations,
2. calibrating the estimate for each test instance based on
their distance from the source distribution. We perform these
without any back-propagation steps, which makes our model
much faster than recent test time adaptation methods. Our
method can be used on any off-the-shelf trained model for
both classification and segmentation tasks. Despite being
very simple, our method is able to achieve significant per-
formance gains compared to directly applying the source
model on the target instances, as reflected in our extensive
experiments and ablation studies along three dimensions -
datasets, tasks, and network architectures.

1. Introduction
Deep neural networks work remarkably well on a vari-

ety of applications, specifically when the test samples are
drawn from the same distribution as the training data. The
performance falls drastically when there is a non-trivial shift
between the train and test distributions [7, 21]. In several
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Figure 1. SITA: Single Image Test-time Adaptation. SITA is a
realistic version of test-time adaptation setting. The model only has
access to the given test instance, rather than a batch of instances.
Online methods with large batch sizes only work well when en-
countering test data from a single distribution at a time, and suffer
a considerable drop (81.2 to 67.6) in performance when images
from different distributions are mixed together and sent as a stream.
Contrastingly, in SITA, since adaptation is done for each individual
test sample independently, it does not suffer from this problem.

real-world settings, such a performance drop may make the
model unusable. There have been recent works in the lit-
erature to train robust models [9, 20, 25]. While this is a
viable research direction for the problem at hand, it entails
modifying the training process. This may not always be prac-
tical as the training data may no longer be available due to
privacy/storage concerns. All that is available is a previously
trained model. Therefore, there is a growing interest in Test
Time Adaptation (TTA), where the models can be adapted at
test time, without changing the training process or requiring
access to the original training data.

TTT [28] and TENT [29] are among recent works that
have been very effective in adapting models at prediction
time. TTT [28] uses auxiliary self-supervised tasks to train
the source model. The model is then fine-tuned (via the
self-supervised sub-network) for every test instance for mul-
tiple iterations. Using TTT for adapting a new model, one
needs to modify the training process (adding self-supervised
sub-network) and hence needs access to the source train-
ing data, which may not be always available. Further, the
multiple backward passes take considerable amount of time
which may not be available where latency is not accept-
able. TENT [29], on the other hand, adapts the given trained
model, without accessing the source data. TENT assumes



that the data comes in batches, with batch size usually much
greater than one. It considers an online setting, where the
model adapted to the current instances (batch) is used for
adapting the subsequent instances (batches), which implies
that the model has information about all the test instances
seen till a certain point.

For example, consider a recommendation model deployed
on an edge-device that takes in a photograph of the user’s
surroundings as input. In this case, the user would provide
the model with a single test image for inference and adapta-
tion. The model does not have a large batch of samples for
model adaptation, and the subsequent queries provided by
the user at different time frames/locations would not belong
to the same distribution for online adaptation, as the user’s
environment keeps changing. Thus, in most deployment sce-
narios, the assumptions made by TTT [28] and TENT [29]
do not hold. Motivated by these, we enumerate the following
desirable properties of algorithms developed for the realistic,
and challenging SITA protocol:

• Does not require access to the source training data.
• Almost as fast as the original model during inference.
• Adapt to a single test instance without requiring a batch.
• Model adapted to a test instance should not be used on

subsequent instances.
• Devoid of hyper parameter tuning at test time.

The first property is related to both privacy/storage issues
and speed, as any re-training on the source data would make
the approach much slower. The motivation behind the third
property is latency and privacy. For large batch sizes, one has
to wait for a certain number of samples, leading to delays, or
club samples from multiple users, which may have privacy
concerns. The fourth property is motivated by the fact that
different test instances may come from very different distri-
butions, which will adversely affect the performance of the
model as highlighted in Figure 1. It shows that online meth-
ods which use large batch sizes, like TENT [29], improve
performance by evaluating one corruption type at a time
(single distribution), i.e., resetting the model for the next
corruption type. When evaluated by mixing all 15 corruption
types in the CIFAR-10-C [8] dataset (mixed distribution),
their performance drops considerably. The last property is
required as we cannot expect validation examples to tune
hyperparameters at test-time for different target distributions.

In this work, we propose a method which overcomes the
aforementioned limitations and fulfills the various desider-
ata of the Single Image Test-time Adaptation (SITA). The
proposed method does not assume any access to the source
data, adapts to one test instance at a time using only a single
forward pass and resets the model to the given source model
for adapting to every new test instance. Our method opti-
mizes the batch-norm statistics of the network for every test

instance. This involves two processes - (1) estimating the
batch-norm statistics from only a single test image, which is
a challenging problem [26], and (2) combining the estimated
statistics with the source statistics by choosing an optimal
parameter for every test instance which respects the fact that
different test instances can be at different distances from
the source distribution. Our adaptation method uses only
one forward pass and thus is quite fast (comparable to using
the source model directly), unlike other TTA methods in
literature which require at least one backward pass. The pro-
posed approach shows consistent performance boosts across
a variety of datasets for both classification and segmentation,
as well as for various network architectures.

The main contributions of this work are as follows:

1. We formalise the Single Image Test-time Adaptation
(SITA) setting.

2. We propose a fast adaptation approach that performs
instance-specific calibration, eliminating the need to
tune hyper-parameters for different target distributions.
Our approach is deployment-friendly as it operates with
limited compute and runtime, and uses only a single
forward pass for adaptation.

3. We achieve state-of-the-art performance for SITA
across all tasks (segmentation and classification),
datasets, and network architectures.

2. Related Work
Table 1 summarizes the characteristics of various settings

which adapt a model trained on a source distribution to a
target distribution. Fine-tuning and domain adaptation are
offline methods, that is, they assume access to the entire
source and target dataset to adapt and thus are out of scope
for test time settings. We divide the discussion on related
works based on the characteristics of the test time setting
proposed by recent works.

Source-free Domain Adaptation. One of the constraints of
SITA is that we cannot use the source data while adaptation,
but only use the trained source model. Recent works in liter-
ature tackle this problem, but using an unlabeled target set
for adaptation, with the hypothesis that the test instances are
drawn from the target distribution. These methods include
- entropy minimization with divergence maximization [15],
pseudo-labeling with self-reconstruction [31], as well as gen-
erating additional target images [13, 16] and robustness to
dropout [24]. Unlike these methods, in SITA, we do not have
any target set to adapt and do not have any assumption over
the distribution of the test instances.

Test Time Training. In this setting, self-supervised tasks
are introduced during training of the source models. These
self-supervised tasks are later used at test time, allowing



Table 1. Characteristics of various problem settings that deal with adapting a model (trained on a source distribution) to a test distribution.
We propose SITA (Single Image Test-time Adaptation), which is the hardest adaptation setting.

Setting Source Data Target Label (yt) Train Loss Test Loss Offline Online Statistics Batched

fine-tuning - 3 L(xt, yt) - 3 - 3

domain adaptation xs, ys 7 L(xs, ys) + L(xt, xs) - 3 - 3

SFDA 7 7 L(xt) - 3 - 3

TTT [28] xs, ys 7 L(xs, ys) + L(xs) L(xt) 7 3 3

FTTA [29] 7 7 7 L(xt) 7 3 3

SITA 7 7 7 7 7 7 7

adaptation of the shared encoder between the main predic-
tion branch and the auxiliary self-supervised task branch.
TTT [28], one of the first works to formalize test time
training, uses the self-supervised task of rotation prediction.
Other recent works [1] extend the auxiliary branch based
approach by using meta-learning to ensure that test-time
training on the auxiliary branch would improve predictions
from the main branch. These approaches cannot utilise any
off-the-shelf model and improve its performance at test time.
Instead they need to re-train the source model with hand-
crafted and often complicated training strategies, and are
quite slow as they need back-propagation steps.

Fully Test Time Adaptation. These approaches have the
advantage of adapting off-the-shelf models, since they do not
rely on any auxiliary task. The state-of-the-art method in this
category, TENT [29], formalised this setting and achieved
better performance than some of the methods which actually
re-train the source model. TENT runs an online optimization
over a given test set, which minimizes the entropy of the
predicted distribution for every incoming batch. Although
the method can be made to work in the SITA setting where
the model is reset after every test instance, their results are
primarily focused in the online setting by gradually adapting
the model over the test set. It gives impressive performance
in the online setting, but we observe significant drop in
performance in the SITA setting (Section 4), when there is
only a single test instance. [18] improves upon TENT by
adjusting the loss function to a log-likelihood ratio instead
of entropy, and maintaining a running estimate of the output
distribution. This setting, while clearly more useful than the
previous one, is not as realistic as SITA because it needs
to (i) accumulate and store samples to create batches, (ii)
run an online optimisation under the assumption that the test
samples come from the same distribution.

BatchNorm Adaptation. Recent literature on domain-
adaptation shows that normalization parameters can have
a significant impact on the performance in domain adapta-
tion. Prediction Time Normalization (PTN) [19] and BN [26]
builds on this idea and uses the mean and variance of the
test instances for adaptation. This works reasonably well
if the test batch size is large enough to provide a good esti-
mate, but the performance drops significantly when we only
have a single image. Moreover these works does not take

into account the fact that different test instances might need
different levels of adaptation, as they may be at different dis-
tances from the source distribution. Contrary to these works,
our method first obtains a robust estimate of the batch-norm
statistics from just a single image using label preserving
transformations. Thereafter, it automatically identifies the
optimal parameter, depending on the image, to combine the
single image estimate with the source statistics, thus offer-
ing different levels of adaptation to different images. This
makes our method applicable to the realistic and challenging
SITA setting, showing consistent performance gains across
a variety of datasets and tasks.

There are a few concurrent works related to TTA which
recently appeared online. You et al. [32] use BN [26] with
CORE [12] loss to adapt the affine parameters of the batch
norm layer. Their method needs backpropagation and large
batch sizes, not conforming with SITA. Zhang et al. [33]
use 32/64 augmented samples for each test sample to ar-
rive at a marginal output distribution and optimizes it using
entropy loss similar to TENT [29], requiring an expensive
optimization per sample. Hu et al. [10] maintain an online
estimate for the statistics of the incoming test data along
with augmentations. In comparison, our contributions are
unique as we propose a lightweight adaptation technique, in
accordance with the harder SITA setting. Further, most of
these approaches involve hyper-parameter tuning for each
target dataset, and the papers do not address tuning them at
test-time, thus making them unrealistic in the SITA setting.

3. Methodology
We next discuss in detail the SITA setting and propose a

simple, yet effective solution for the same. We first formally
define the problem statement, and then discuss the challenges
that motivate our approach.

Problem Statement: Consider that we have a model fθ :
x→ y, trained on a dataset, which we refer to as the source.
This model may not perform well on test data drawn from
distributions other than the source, which can be either a
corrupted version of the source itself or images drawn from
a different distribution, both of which will be referred to as
the target. The goal is to adapt the model fθ such that the
adapted model performs better on the target images com-
pared to directly using the source model. As motivated in



Section 1, we focus on the challenging SITA setting, where
inference has to be done on a single image at a time, and not
a batch of instances, with the model being reset to the source
model after every test instance adaptation.

Internal Covariate Shift: In deep neural networks, the
mean and covariance statistics of every batch-normalization
layer are learned using exponential moving average during
training, and these accumulated statistics are usually used
during testing, as given below for a particular layer:

BN(F) = γ
F− Es[F]√

Vars[F]
+ β (1)

where F is the input feature to the batch norm layer and γ, β
are scale and shift parameters, also learned during training.
The subscript s indicates source data. The underlying reason
behind using the train statistics instead of the test batch statis-
tics is that the train statistics are estimated on a much larger
set compared to a batch of test data, which is much smaller
and hence can give a biased estimate of the statistics. While
this method works well for the test samples drawn from a dis-
tribution similar to the source, its performance may degrade
if the test samples come from a different distribution. This is
because the feature distribution F of the intermediate layers
of the network may have mean and variance shifted from the
train statistics, due to the shift in the input distribution. This
is often termed as internal covariate shift [11, 26].

To mitigate this problem, the statistics can be estimated
from the target dataset and used, instead of the learned source
statistics, i.e., replace Es[F] and Vars[F] in Eqn. (1) with
Et[F] and Vart[F], which can be computed as follows:

Et[F] =
1

ntHW

∑
i,j,k

Fi,j,k

Vart[F] =
1

ntHW

∑
i,j,k

(Fi,j,k − Et[F])2 (2)

Fi ∈ RH,W,F is the feature map of the ith instance. H,W,F
are the height, width and feature dimension respectively.
j ∈ {1, . . . ,W}, k ∈ {1, . . . ,H} and nt is the number of
target instances in the dataset. This is strategy is followed
in several domain adaptation works [2, 14], as well as in
Prediction Time Normalization (PTN) [19]. The domain
adaptation works assume access to a target training set with
which one can obtain a good estimate of the above mean
and variance. On the other hand PTN assumes a huge batch
of test instances, thus able to obtain a good estimate of the
mean and variance. However, in the SITA setting, neither
do we have access to a target training set or a batch of test
instances, and cannot use the updated model or the current in-
stance’s statistics to infer the subsequent test instances. This
makes our setting much harder compared to other settings in
literature on test time adaptation [29].

Batch-Norm Parameter Calibration: When we have a
limited number of target samples from a distribution different
from the source, using only the target statistics from Eqn
2 may not work well, because of unreliable estimates from
only a few samples. Additionally, using only the source
statistics may not work well because of internal covariate
shift. Instead using a weighted combination of the two may
be a better alternative:

µ = λEs[F] + (1− λ)µt

σ2 = λVars[F] + (1− λ)σ2
t (3)

where λ ∈ [0, 1]. This strategy considers the source statistics
as a prior. On one hand, λ = 1 results in using the source
model directly on the target instances. In this case, the
estimator has high bias. On the other hand, λ = 0 results in
using only the single test image statistics. In this case, the
variance of the estimator is high. The estimator in Eqn. (3)
provides a balance to bias and variance, with the underlying
hypothesis that the target distribution is a shifted version
of the source. It can be shown that the mean estimator has
(1−λ)2 times lower variance and ||(1−λ)(Es[F]−Et[F])||
lower bias magnitude than the worst variance and bias of the
two estimators corresponding to λ = 1 and λ = 0.

While this may perform well when the is at least a few tar-
get instances, in the SITA setting, with only one test instance,
the estimation error can be significant.

Augmentation for Statistics Estimation: Given a single
test instance, we can estimate its statistics (µt, σt) using
Eqn. (2), with nt = 1. However, this estimate may have
errors as it is computed using a single instance. Ideally, we
want the single image estimate (µt, σt) to be as close as
possible to the true statistics of the target distribution. The
variance of the above estimators can be reduced by increas-
ing the number of samples. Given that we have only one
sample x at hand, we ask the question - is it possible to
generate more data points to improve the estimates? While
we do not have access to the underlying distribution of the
target instances, we can possibly create data points in the
vicinity of the test sample x. Inspired by the recent works in
contrastive learning for representation learning [4] and theo-
retical justifications of pseudo-labeling [30], which suggests
that using neighborhood samples via augmentation helps
in the respective tasks, we adopt this idea for our task to
improve the estimate of target image statistics.

Specifically, we use a set of augmentations to aug-
ment x and obtain {x̂1, . . . , x̂n}. This generates features
{F̂1, . . . , F̂n} for a certain batch normalization layer, and
we use these features along with the original feature F to
obtain a better estimate of the statistics, µt and σt from the
given single image. However, as it is hard to control the
distribution of the augmented samples, and certain augmen-
tations can outweigh the estimation, instead of assigning the



same weight to all the augmented samples as the original
sample, we distribute the weight as follows:

µt = Ew({F, F̂1, . . . , F̂n};w = {1/2, 1/2n, . . . , 1/2n})
σt = Varw({F, F̂1, . . . , F̂n};w = {1/2, 1/2n, . . . , 1/2n})

(4)
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Figure 2. AugBN layer. Modifying the BatchNorm (BN) layer
with augmented samples (Algorithm 2). The test image along
with a combination of augmented samples are used to estimate the
batch-norm statistics using Eqn. 4. This estimation happens with
one forward pass using the AugBN layer (Algorithm 1).

We choose a fixed set of augmentations {a1, . . . , am},
from which we randomly pick k(≤ m) augmentations.
These are composed to obtain the augmentation functions Ai,
and apply it on the test image to generate augmented images
x̂i. Since these new samples x̂i are generated from a single
parent sample x̂, the samples are not independent. Thus, the
variance reduction may not be linear with the number of aug-
mented samples (as the underlying assumption in that case
is that the samples are independent). Having said that, using
the augmented samples does improve the performance over a
range of tasks, as we observe in our experiments (Section 4).
The modifications needed in the vanilla BatchNorm layer to
incorporate the AugBN layer is described in Algorithm 1.
Figure 2 shows AugBN pictorially. In the next section, we
propose how to set the prior parameter λ, optimally for each
test instance using a single forward pass.
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Pred for �n

Figure 3. Illustration for the SITA adaptation method. Each AugBN
layer maintains a vector of statistics for each prior choice. The
model returns the final prediction based on a majority vote on the
entropy of the output distribution (OPS).

Optimal Prior Selection (OPS): Test instances can origi-
nate from different distributions, which may be at different

Algorithm 1: AugBN
Input: - Source statistics: µs, σs, prior = λ

- Input batch features: F, ⊕ {F̂}ni=1.
Output: Normalised Features:

F̄ = AugBN(F, {F̂i}ni=1)
	 F̄← F−µs

σs

⊕ µ← λµs + (1− λ)µt (Eqn. 4)
⊕ σ ← λσs + (1− λ)σt (Eqn. 4)
⊕ F̄← F−µ

σ

Comment: ⊕ and 	 signify additions and removals from
the standard batch normalization layer)

Algorithm 2: Proposed Algorithm for SITA
Input: - Single Image: x

- Source Model: fθ
Output: Prediction: y
f̂θ ← Repalce BN Layer in fθ with AugBN Layer
for i = 1 . . . n do

Ai ← Compose(RAND-Choose-k({ai}mi=1))
x̂i ← Ai(x)

end
X← REPEAT[x, x̂1:n] k times
z ← f̂θ(X) s.t. λi used for Xi(n+1):(i+1)(n+1)

y ← OPS(z)

1. RAND-Choose-k() uniformly randomly chooses
k(< N) augmentations from the given set.

2. OPS() denote the Optimal Prior Selection strategy.

Figure 4. Variation of model performance with entropy. We observe
a strong negative correlation between entropy of an instance’s
prediction and its correctness, and thus use entropy as a metric to
determine the level of adaptation needed.

distances from the source. We ask this question - ”Can we
automatically identify the level of adaptation needed, that
too in a single forward pass?”. To answer this question,
we look at the prior parameter λ in Eqn 3, which combines
the source and the target statistics. Optimally choosing this
parameter conditioned on the test image can allow us to
efficiently control the level of adaptation.



With this goal in mind, we envisage the entropy of the
prediction’s probability mass function as a metric to measure
its correctness. In Fig. 4, we observe a strong negative
correlation between correctness of prediction and entropy.
Specifically, for classification, we forward propagate through
an AugBN equipped network for np different prior values
(batched together in a single forward pass) and first choose
the k (k < np) priors which have the lowest entropy of the
predictions. We then take a majority voting of the predictions
for these k priors, and break a tie with the lowest entropy
value. For segmentation, we repeat this strategy for all pixels
individually. Note that we repeat the same set of augmented
images for all the np priors. For all datasets/tasks, we use
np = 8, and k = 3. This approach not only allows us to
choose the level of adaptation based on the input, but also
automatically chooses the prior λ, which would otherwise
be an hyperparameter. Figure 3 illustrates the single forward
pass for our approach, which makes it practical in the SITA
setting. The entire algorithm to adapt the model during
prediction is shown in Algorithm 2.

4. Experiments
Here we demonstrate the effectiveness of our approach by

running thorough experimentation on a variety of adaptation
benchmarks for both segmentation and classification, and
over multiple network architectures. In comparison, the
focus in most related works has primarily been applied on
classification tasks, with limited number of networks.

Semantic Segmentation Datasets: We evaluate our method
on three different source → target combinations covering
both indoor and outdoor scenes, to showcase the wide usabil-
ity of our algorithm. For outdoor, we evaluate on GTA5 [22]
→ Cityscapes [5] and SYNTHIA [23]→ Cityscapes. For
indoor, we show results on SceneNet [17]→ SUN [27]. The
outdoor and indoor scene datasets have 19 and 13 categories,
respectively. Following the literature on domain adaptation
of semantic segmentation models, we use Deeplab-V2 [3]
with ResNet-101 [6] as the backbone. We use one GPU to
train source models with a batch size of 1 in all experiments.
We use SGD with an initial learning rate of 2.5× 10−4 with
polynomial decay of power 0.9 [3]. We use the standard
metric of mean intersection over union (mIoU) [3]. We use
Gaussian filtering and random rotation as augmentations as
they preserve the are label preserving for segmentation.

Classification Datasets: Following the literature [18,26,28,
29], we evaluate our method on common adaptation datasets,
namely the corruption and perturbation data, CIFAR-10-C
and ImageNet-C [8]. Following previous works, we report
results on the highest severity level of corruption. We com-
pare the mean Classification Accuracy (mCA) over all 15
corruption types on both the datasets. Further, we test our
approach on ImageNet-R and ImageNet-A, comprising of

renditions of ImageNet classes and adversarial ImageNet
examples respectively. We adopt the same network architec-
ture used in the recent works [28, 29], i.e., ResNet-26 and
ResNet-50 for CIFAR-10 and ImageNet respectively. The
source model for CIFAR-10 is trained on one GPU with a
batch size of 64, using SGD with cosine decay scheduler and
an initial learning rate of 0.01. The source model achieves
93.84% accuracy on the CIFAR-10 test set. For ImageNet,
the model is trained on 8x8 TPU slices with a batch size
of 8192. We use Adam optimizer along with the cosine
decay scheduler with an initial learning rate of 0.1. This
source model obtains 76.4% accuracy on ImageNet. For all
classification results we use two augmented samples, each
composed of five SimCLR [4] based augmentations from
color distortion [28], rotation, mirror reflection, vertical
and horizontal flip augmentations which are randomly shuf-
fled, creating a diverse set of label preserving augmentations
which are used for all datasets and network architectures
without any tuning. Please refer to the supplementary for
more details.

Baselines. We compare with the strong state-of-the-art base-
lines, namely TENT [29], BN [26], and Prediction Time
Normalization (PTN) [19], and Aug-Ensemble. In Aug-
Ensemble, we follow a common practice and augment the
test instance to obtain multiple augmented images, and then
take an average over all the predictions to get the final pre-
diction. For classification we use the same augments in
AugEnsemble as we use in our algorithm. But for segmen-
tation, to maintain the spatial correspondence, we only use
gaussian smoothing and gaussian noise as the augmentations
for AugEnsemble. All methods are executed in the SITA
setting, that is, the test batch size for all experiments is fixed
to 1 and no method is allowed to run an online optimization
or to maintain online statistics. Note that the results in the
TENT paper [29] are for the online setting over a batch size
of 64 and 128 for ImageNet-C and CIFAR-10-C respectively.
But we apply TENT in the SITA setting, where we reset the
model to the source model after inferring every test instance,
and use five iterations of optimization with a learning rate of
10−3 (this is the best result we obtained by experimenting
over a range between [10−2, 10−5]) with Adam optimizer as
it provides the best computation time vs performance trade-
off. For BN, we showcase the results with the suggested
hyper-parameter setting (N = 16 in [26]).

Layer-wise analysis. To study the effect of adapting differ-
ent layers of a network and which layers are the most affected
by the adaptation, we design an experiment on CIFAR-10-C
using ResNet-26, which has 4 block-groups, grouped by
number of features (64, 128, 256, 512), each consisting of 3
residual blocks. We replace source BN layers with AugBN
layers for each residual block and observe the performance
(Figure 5). The results for all configurations are shown in



Table 2. Comparison of our method (SITA) with other baselines for test time adaptation with a single image at a time.

Segmentation (mIoU) Classification (mCA)

Methods
GTA5 SYNTHIA SceneNet

CIFAR10-C ImageNet-C ImageNet-A ImageNet-R
→ Cityscapes → Cityscapes → SUN

Source Model 37.6 32.1 26.5 61.4 20.5 0.5 35.4
Aug Ensemble 35.5 32.4 26.7 61.3 20.5 0.6 35.2
PTN [19, 26] 36.7 31.8 25.2 55.8 0.3 0 1.4
BN [26] 40.4 32.9 28.2 65.1 24.5 0.9 38.4
TENT [29] 37.6 32.7 26.6 55.9 0.3 0 1.2

SITA 42.9 36.5 28.8 73.1 25.5 1.1 40.3
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Figure 5. Results for layer-wise sensitivity analysis.

Figure 5. First column on the left represents all blocks us-
ing source BN layers, and the last column represents using
AugBN in all the layers. In columns 2-4, we set the final
blocks to gradually use AugBN and in columns 5-7 we set
the initial blocks to use AugBN. As columns 5-7 has much
better performance than columns 2-4, it shows that adapt-
ing the first few layers has more impact than adapting only
the last few layers, as the former capture domain specific
information. Moreover, using AugBN in only the first block
(column 5), we obtain higher mCA than using the source
statistics in the first block and AugBN on the rest.

Comparison with state-of-the-art. Table 2 shows the com-
parison with state-of-the-art methods for both classification
and segmentation. For segmentation, our method SITA
achieves the best performance on all the three datasets with
a 14.8%, 14.0% and 8.8% relative improvement over the
source model on GTA5→ Cityscapes, and SYNTHIA→
Cityscapes and→ SUN respectively. For classification, our
method gives a huge 19.1% relative improvement on CIFAR-
10-C compared to just using the source model directly, and
also performs much better than state-of-the-art approaches.
ImageNet-C is a much harder dataset to do adaptation using
just a single instance, and the methods which do not incor-
porate source statistics (TENT [29] and PTN [19]) suffer a
huge loss in performance as their normalisation statistics are
highly incompatible with the source model.

Ablation of Optimal Prior Selection. While a network
equipped with our AugBN layer may perform good for a
range of prior values, the best performance may not be at
the same fixed prior value across all datasets, thus making
it tricky to choose the best prior without the presence of a
validation set. For e.g., Figure 7 shows that the best per-
forming prior is λ = 0.5 for SYNTHIA→ Cityscapes, but
λ = 0.6 on CIFAR-10 → CIFAR-10-C. This is because
different target datasets, and even different target samples,
maybe at different distances from the source distribution,
thus requiring different levels of mixing between the source
and target statistics. However, the optimal prior selection
strategy in our algorithm automatically selects the prior for
every sample, and perform at par or even better than using
the best fixed prior on CIFAR-10-C.

Computational Analysis The proposed method requires
only one forward pass of the original test image itself along
with its augmented versions, and thus the inference time is
very close to the source model itself. We report the average
computation time for all methods on the SYNTHIA [23]
→ Cityscapes setting in Figure 6a and on CIFAR-10-C in
Figure 6b. This computation time also includes the time
required to compute the necessary augmentations. Compared
to TENT [29] which is currently the state-of-the-art TTA
method, our method is 2.2x faster with a 11.6% relative
improvement on segmentation and (Table 2) and 2.5x faster
with a 30.7% improvement in classification.

Results on additional architectures: To showcase the
universality of our approach we test our adaptation technique
across various pretrained ImageNet network architectures on
the ImageNet-C, ImageNet-A and ImageNet-R in Table 3.
Our approach provides significant performance gains across
all architectures and datasets. This shows the generalizability
of our method across architectures.

Generalized Test Time Adaptation: In practice, the test
instances can originate from both the source as well as un-
known target distributions. Ideally TTA algorithms should



(a) SYNTHIA→ Cityscapes (b) CIFAR-10→ CIFAR10-C

Figure 6. Computation time vs performance comparison on (a) segmentation and (b) classification tasks. Our method take almost similar
time as the source model’s inference time, but performs much better than all the baselines.

(a) SYNTHIA→ Cityscapes. (b) CIFAR10→ CIFAR10-C dataset.

Figure 7. Ablation of automatically selecting the prior parameter for every image (red) vs using a fixed parameter for all images (blue)
denoted by “Only AugBN”. The numbers in brackets are the number of augmented samples used. The performance varies significantly
with the choice of fixed prior value, and it becomes difficult to choose the best fixed prior parameter without a validation set. Whereas, our
method automatically selects the prior for every image, and can perform even better than the best fixed parameter, as it has the ability to
judge the level of adaptation needed depending on the input sample.

Figure 8. Generalized TTA: The λ parameter in BN [26] that
works well for images from source distribution (CIFAR10) is differ-
ent from the one that works well for the target distribution (CIFAR-
10-C), which is a sticky issue. On the other hand, the proposed
method SITA (horizontal red lines) does not need a curated λ value,
instead it automatically chooses the best λ for each test instance.

work well on both the cases. In the SITA setting, we have no
information about the originating distribution, and thus the
BN method [26], which calibrates the batch-norm statistics
using a fixed prior, may not work well if a test instance from
the source appears (Figure 8). This is because the source
statistics would work the best in such a case, rather than the
calibrated statistics. However, the proposed OPS strategy
would automatically choose a suitable prior parameter λ irre-
spective of whether the test instance is from unknown target
distribution or the source distribution. Hence the proposed

Table 3. Results on other network architectures. -C, -A, and -R
denote ImageNet-C, ImageNet-A and ImageNet-R datasets.

Networks→ DenseNet121 InceptionV3

Datasets→ - C - A - R - C - A - R

Source 22.7 0.7 37.5 30.4 3.2 39.1
PTN [19, 26] 0.1 0.0 0.6 0.2 0.1 1.0
BN [26] 25.6 1.3 40.2 35.8 3.5 42.8

SITA 25.8 1.4 41.4 36.2 3.7 46.0

approach is more robust in such realistic situations.

5. Conclusion

Test-time adaptation has gained recent interest in the liter-
ature given its ability to adapt models only during test-time.
In this work, we formalise the test time problem under the
realistic and challenging Single Image Test-time Adaptation
(SITA) setting. We propose a simple framework which sig-
nificantly outperforms the state-of-the-art while overcoming
some of the limitations of the existing approaches. The
strength of the proposed approach is in its speed and perfor-
mance, applicability for multiple tasks and network architec-
tures, while being simple and easy to implement.
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