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Abstract

Food image segmentation is an important task that has
ubiquitous applications, such as estimating the nutritional
value of a plate of food. Although machine learning mod-
els have been used for segmentation in this domain, food
images pose several challenges. One challenge is that food
items can overlap and mix, making them difficult to distin-
guish. Another challenge is the degree of inter-class sim-
ilarity and intra-class variability, which is caused by the
varying preparation methods and dishes a food item may
be served in. Additionally, class imbalance is an inevitable
issue in food datasets. To address these issues, two models
are trained and compared, one based on convolutional neu-
ral networks and the other on Bidirectional Encoder repre-
sentation for Image Transformers (BEiT). The models are
trained and valuated using the FoodSeg103 dataset, which
is identified as a robust benchmark for food image segmen-
tation. The BEiT model outperforms the previous state-of-
the-art model by achieving a mean intersection over union
of 49.4 on FoodSeg103. This study provides insights into
transfering knowledge using convolution and Transformer-
based approaches in the food image domain.

1. Introduction
Every year, malnutrition causes a $10 billion annual bur-

den on the healthcare system in the United States [8]. There
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Figure 1. Comparison of downstream task performance of CNNs
and ViTs on food image segmentation for the purpose of evaluat-
ing feature transferability.

is a strong link between poor nutrition and disease, mortal-
ity, and impaired quality of life [17, 24]. Older adults are at
the greatest risk of health complications due to nutritional
deficiencies, being over four times more likely to be hospi-
talized due to malnutrition. Further, they are at higher risk
because one in four adults aged 65 years or older is mal-
nourished [9, 10].

Nutrition monitoring has been proposed as a solution
for combating malnutrition among the at-risk aging popu-



lation [15]. Methods exist for monitoring and measuring
nutritional intake, but most of them are not reliable or accu-
rate [18]. For example, food diaries, questionnaires, weigh-
ing, and photography each suffer from slowness, the need
for trained personnel, or reporting biases.

Recognizing and breaking down the nutritional contents
of a plate of food is one of the core tasks in food imaging
for nutrition monitoring. Various pipelines using computer
vision models have been designed [23, 28]. One promising
approach [16] combines semantic segmentation with depth
imaging to generate segmentation masks. The depth map is
then used to compute estimates for food volumes.

Convolutional Neural Networks (CNN) are one of the
mainstream methods for semantic segmentation. CNNs are
mostly lightweight in terms of computational and memory
requirements and benefit from strong inductive biases. Nu-
merous variations of CNNs have been proposed, which in-
troduce advanced architectural designs and complex con-
volutional operations. For example, deformable convolu-
tions endow CNNs with adaptive receptive fields [5], and
pyramid pooling modules allow CNNs to better make use
of global context clues in the scene [29].

More recently, Transformer-based models have achieved
great success across computer vision tasks including se-
mantic segmentation [6]. Equipped with multi-headed self-
attention mechanisms, these models have a global receptive
field that enables them to make better use of global context
information, although this comes at the expense of a higher
computational and memory cost [25].

In addition to the ubiquity of Transformer-based models,
recent years have also seen a shift towards large-scale vision
models. BEiT [1, 14] and InternImage [27] are both rep-
resentatives of this paradigm. They are large-scale models
pre-trained on ImageNet and capable of being fine-tuned for
numerous downstream vision tasks [7]. After pre-training,
a task-specific layer or network is appended, and the whole
network is fine-tuned for the desired downstream task.

Semantic segmentation on food images presents a unique
set of challenges. One of them is that foods can occlude
and mix with one-another in complex ways, preventing the
model from accurately deliminating between them [15].
Another challenge is the presence of inter-class similarity
and intra-class variability. For example, chicken and ham
can be prepared to have a very similar appearance. Different
cooking techniques applied to chicken can result in vastly
different visual characteristics. An effective food segmen-
tation model must be able to recognize the diverse appear-
ances of chicken without confusing it with other similar-
looking foods like ham [28].

Food image datasets are not as large or robust as other
domains, especially when it comes to the need of im-
age masks for training semantic segmentation models.
UBIMIB2016 [4], UECFoodPixComplete [13], and Food-

Seg103 [28] are datasets with fine-grained segmentation
masks. Other existing datasets are mainly for food recog-
nition and coarse-grained segmentation tasks. For instance,
Recipe1M comprises one-million food images with corre-
sponding recipes [12], and Food101 contains approximately
one-hundred thousand food images across 101 classes [11].
However, neither of them includes annotation masks for
segmentations. Among the food datasets that support se-
mantic segmentation, we identify FoodSeg103 as the most
robust [28]. This is due to its detailed, pixel-level anno-
tations, plus empirical evidence of its relatively high diffi-
culty. Previous works have achieved a mean intersection
over union (mIoU) over all classes of up to 45.1 using a
ViT-B/16-based Segmentation Transformer [28, 30].

In this study, we aim to gain insight into how convolu-
tional and Transformer-based architectures differ in knowl-
edge transfer to the food image domain. Convolution-based
methods are one of the main-stream approaches for segmen-
tation, including the recent InternImage model [27], which
is based on a deformable convolution operation, DCN-V3.
It has achieved state-of-the-art results on the challenging
ADE20k dataset for semantic segmentation [31]. There-
fore, we include InternImage [27] as a baseline model.

In this work, we propose utilizing the BEiT v2 model
[14], which is a recent Transformer-based model that has
yet to be applied to food image segmentation. The BEiT
v2 encoder is more sophisticated than prior works, owing to
its pre-training procedure, which involves training an im-
age tokenizer and visual codebook (see Figure 1). This
promotes the learning of richer, semantic-level information,
rather than lower-level, pixel-based information.

Through exploring the distinctions between InternImage
and BEiT v2 on knowledge transfer to the domain of food
images, we make the following findings and contributions:

• We survey the landscape of food image datasets for
the purpose of semantic segmentation. We identify the
most robust dataset and explain what makes it strong
for semantic segmentation. Additionally, we explain
why other datasets may not be suitable for this task.

• We train a tokenizer to investigate the power of vector-
quantized knowledge distillation in the food image do-
main. We find that the tokenizer is learning semantic
concepts in the food image dataset.

• We evaluate state-of-the-art models in the new domain
of food images. Our experiments will provide insight
into how knowledge transferability differs between
convolution and Transformer-based architectures.

• We establish top results on the FoodSeg103 dataset. In
particular, a BEiT v2 model achieves a mIoU of 49.4
on FoodSeg103, outperforming the previous state-of-
the-art model’s mIoU of 45.1.



(a) UNIMIB2016 (b) UECFoodPixCom-
plete

(c) FoodSeg103

Figure 2. Image, mask pair from UNIMIB2016, UECFoodPix-
Complete, and FoodSeg103.

2. Methods

2.1. Dataset

The field of food image datasets has expanded in recent
years, yet few datasets are specifically designed for seman-
tic segmentation. Furthermore, each of these datasets has its
own unique strengths and weaknesses. The datasets we in-
vestigate for semantic segmentation include UNIMIB2016,
UECFoodPixComplete, and FoodSeg103 [4, 13, 28]. We
choose these datasets because they all provide segmenta-
tion masks. Larger food image datasets exist but they do
not contain segmentation masks. We include a sample im-
age and mask pair from each of UNIMIB2016, UECFood-
PixComplete, and FoodSeg103 in Figure 2.

UNIMIB2016 was one of the first datasets in the food
domain with ground truth food masks to support food seg-
mentation. It was published in 2017 by researchers from
the University of Milano-Bicocca for the purpose of inves-
tigating food segmentation, food consumption, and dietary
monitoring. The dataset consists of 1027 food images span-
ning 73 food categories. Food image segmentation masks
are created manually with polygonal bounding boxes. Fur-
ther, masks are not per-item, so all food classes are clubbed
into one category in the segmentation masks [4].

UECFoodPixComplete was released in 2020 by re-
searchers from the University of Electro-Communications.
It includes 102 dishes and comprises 10,000 food images.
The segmentation masks were obtained semi-automatically
using GrabCut, which segments images based on user-
initialized seeding [21]. The automatically-generated
masks were further refined by human annotators based on
a set of predefined rules [13].

FoodSeg103 is a recent dataset designed for food im-
age segmentation, consisting of 7,118 images depicting 730
dishes. It was released in 2021 and the dataset’s masks are
pixel-level. They were obtained through manual annota-
tions. The masks were then inspected for further refine-

Table 1. A summary of several robust food datasets, their number
of classes, number of images, and whether it includes masks for
segmentation ground truths.

Dataset Classes Images Masks

UNIMIB2016 73 1027 Yes
UECFoodPixComplete 102 10,000 Yes
FoodSeg103 103 7118 Yes
Recipe1M 887,706 No
Food101 101 101,000 No

ment. Compared to UECFoodPixComplete, FoodSeg103
proves to be a more challenging benchmark for food image
segmentation. In experiments conducted with a deeplabv3+
model [2], a lower mIoU of 34.2 was achieved on Food-
Seg103 than UECFoodPixComplete [28]. Further, un-
like UECFoodPixComplete, which covers entire dishes but
lacks fine-grained annotation for individual dish compo-
nents, FoodSeg103 aims to annotate dishes at a more fine-
grained level, capturing the characteristics of each dish’s in-
dividual ingredients.

We conclude that FoodSeg103 is the most suitable
dataset for training and evaluating a model for food image
segmentation. In Table 1, we summarize various datasets,
including some larger datasets that lack annotation masks,
which are essential for training segmentation models using
a supervised paradigm.

2.2. InternImage

Neural networks that make use of convolutions have
been a longstanding standard in computer vision. The
new InternImage model, which uses a variation of convo-
lutions called Deformable Convolution V3 (DCN-V3), has
achieved state-of-the-art results in semantic segmentation
on notable benchmarks such as ADE20k [31]. The DCN-
V3 operation uses a 3 × 3 convolution kernel with learn-
able receptive fields and modulation scalars [27]. By equip-
ping convolutions with a learnable receptive field, they can
overcome their weaknesses. In particular, they can learn to
utilise long-range dependencies and adaptive spatial aggre-
gation from the data. Further, InternImage also retains the
benefits of computational and memory efficiency that most
convolutional models have over Transformer-based models.

InternImage processes images in several stages using
blocks (see Figure 1). The input is down-scaled between
the blocks so that each feature map has a different resolu-
tion. Each DCN-V3 block consists of a number of basic
blocks, where the basic block is designed to resemble a Vi-
sion Transformer, at a high level. The basic block consists
of two sub-layers. The first uses the DCN-V3 operation as
its core operator, and the second is a simple feedforward
network. Both outputs have layer normalization applied.



Table 2. A summary of the model versions considered in experi-
ments, including their sizes and input resolutions.

Model Name Number of Parameters Crop Size

BEIT Large 441M 640×640
BEiT v2 Base 163M 512×512
BEiT v2 Large 441M 512×512
BEiT-3 1B 896×896
InternImage-B 128M 512×512
InternImage-L 256M 640×640
InternImage-XL 368M 640×640
InternImage-H 1.31B 896×896

Finally, each sub-layer has a residual connection surround-
ing it [27]. InternImage is trained on ADE20k and equipped
with Mask2Former (a unified framework for all segmenta-
tion tasks based on masked attention) [3]. For the task layer,
an UperNet decoder is appended for semantic segmentation.

2.3. BEiT

The BEiT models [1, 14, 26] are Vision Transformer-
based architectures capable of encoding images. They use
masked image modeling as the pre-training task. In this
process, images with corrupted patches are fed into a vision
encoder, with the reconstruction target being visual tokens
obtained from an image tokenizer.

There are three versions of the BEiT model. The first
version introduces masked image modeling as a pre-training
task for ViTs, using a pre-trained tokenizer from DALL-
E [14, 20]. The second version improves upon the first by
training its own visual tokenizer using ImageNet-1K [1].
Finally, the third version is multi-modal and significantly
scales up the number of parameters (1B parameters used on
vision tasks) [26].

We chose to use BEiT v2 for several reasons. Although
BEiT v3 achieves stronger results via scale and multi-
modality, its approach to vision is not upgraded from BEiT
v2. We also selected BEiT v2 over the first BEiT due to
its learned tokenizer, which provides a richer reconstruction
target for the encoder than the pre-trained tokenizer used in
the first BEiT model. The BEiT v2 model uses a teacher
model to train a tokenizer using vector-quantized knowl-
edge distillation [1]. The tokenizer consists of a Trans-
former encoder and quantizer. The quantizer works by map-
ping each vector output from the Transformer encoder to its
nearest neighbour in a codebook, which serves as a visual
vocabulary. In this way, the continuous semantic space that
the Transformer maps to is quantized into discrete codes.
A decoder then learns to construct teacher model outputs
from the sequence of codebook vectors. Through this, the
tokenizer learns a meaningful codebook of semantic con-

Table 3. An overview of the models applied to the FoodSeg103
dataset, along with their mean intersection over union. InternIm-
age and CCNet are based on convolutions; the remainder are on
Transformers

Model Name Number of Parameters mIoU

BEiT v2 Large 441M 49.4
InternImage-B 128M 41.1
SeTR-MLA 711M 45.1
SeTR-Naive 723M 43.9
Swin-S 931M 41.6
CCNet 381M 35.5

cepts from the training set. This is an improvement over
the first version of BEiT, which used a pretrained tokenizer
from DALL-E [20].

The aim of the tokenizer is to discretize the continuous
semantic space into codebook categories. Discretizing the
continuous semantic space into compact codes using the
codebook allows us to create a semantic-aware tokenizer.
Each code in the codebook represents a semantic concept
from the dataset used (e.g., unique codes for plates, eyes,
foods, etc.). This approach will promote the mask-image
modeling from pixel to semantic-level learning, resulting in
richer representations. In the food domain, where the same
ingredient can have varied appearances and contexts in dif-
ferent images, these stronger representations will prove to
be useful.

After training the tokenizer, a network of stacked Trans-
former blocks is trained as a vision encoder. The encoder
is trained using the task of masked image modeling. Dur-
ing this process, the input image is split into patches, and
some of the patches are masked using a learnable embed-
ding. This corrupted image is then fed as a sequence into
the Transformer blocks, with the goal of recovering vi-
sual codebook tokens from the input image. The tokenizer
trained in the previous step is used to generate the ground
truth values used by the BEiT v2 encoder in this step. Once
the encoder has been trained, we append an UperNet de-
coder as the task layer for semantic segmentation, then fine-
tune the model.

3. Results
3.1. InternImage Model

Among several sizes of the InternImage model that we
considered for experiments, we use the base InternImage-B
model to compare against the large BEiT v2 model. They
use the same crop size and have a comparable number of
parameters. The relative sizes of the various InternImage
and BEiT models are summarized in Table 2.

The InternImage encoder is pre-trained before having



(a) Prime Rib I (b) Prime Rib II (c) Filet Mignon I (d) Filet Mignon II (e) Pork Chop I

Figure 3. Food images to be tokenized using the learned tokenizer and codebook. Same-category foods have the highest IoUs, but similarly-
looking cross-category foods can also yield high IoUs.

Table 4. Token intersection over unions for images in Figure 3

Prime Rib I Prime Rib II Filet Mignon I Filet Mignon II Pork Chop I

Prime Rib I - 0.281 0.121 0.153 0.131
Prime Rib II 0.281 - 0.123 0.126 0.152
Filet Mignon I 0.121 0.123 - 0.242 0.233
Filet Mignon II 0.153 0.126 0.242 - 0.171
Pork Chop I 0.131 0.152 0.233 0.171 -

a task-specific layer appended for semantic segmentation.
pre-training for InternImage-B is done using classification
on ImageNet-1K for 300 epochs. [27].

Following the pre-training, the InternImage models are
fine-tuned for semantic segmentation on FoodSeg103. In
particular, we append an UperNet decoder as a task layer
for semantic segmentation. Subsequently, the model under-
goes end-to-end fine-tuning using the AdamW optimizer for
160K iterations. We use a learning rate of 6e−05, no weight
decay, and betas of (0.9, 0.999).

3.2. BEiT Model

3.2.1 BEiT Tokenizer Training

We trained a BEiT v2 tokenizer on Food101 to investigate
the power of vector-quantized knowledge distillation. The
visual tokenizer is initialized as a ViT-B/16 Transformer and
taught by a CLIP-B/16 model [19]. The codebook size is
8192, and the dataset used is Food101, which has 101,000
images. The model is trained for 100 epochs, and the input
image resolution is 224 × 224, which gives 14 × 14 total
image patches each with resolution 16× 16.

To evaluate the trained tokenizer, we run inference on
food images from several categories in Food101, obtaining
their corresponding token sequence. We compare tokenized
images by considering the IoU of their sets of tokens. In
particular, given tokenized images Ii, Ij ⊆ {1, ..., 8196},
we compute

|Ii ∩ Ij |
|Ii ∪ Ij |

to measure the similarity of the tokenized images. We find
that images belonging to the same food category typically
have a higher degree of similarity, indicating that the to-
kenizer is successfully learning semantic concepts for the
codebook. Figure 3 and Table 4 show a collection of food
images and their corresponding token IoUs. Encouragingly,
we see that the highest IoUs come from foods of the same
class. However, we also see the inter-class similarity of the
food domain in the similarity of the tokenized pork chop
and filet mignon.

3.2.2 BEiT model tuning

After learning the visual tokenizer, pre-training of the BEiT
v2 encoder is conducted. For the large-size model, it is ini-
tialized as a ViT-L/16 large-size Vision Transformer with a
16-pixel patch size. The tokenizer that generates ground
truths for the pre-training of masked image modeling is
used here. Masked image modeling is performed using
ImageNet-1k at a resolution of 224× 224 for 1600 epochs,
resulting in 14×14 image patches. A masking ratio of 40%
is used, which means that up to 75 patches will be masked
per image.

Given the pre-trained large-size BEiT v2 encoder, we
append an UperNet decoder for the task layer. The en-
tire model is then fine-tuned for 160K iterations (approxi-
mately 50 epochs) at an input resolution 512 × 512 using
the AdamW optimizer. We use a learning rate of 3e − 05,
weight decay of 0.05, and betas of (0.9, 0.999). The best-
performing model during training achieved a mIoU of 49.4



(a) FoodSeg103 sample (b) BEiT prediction (c) InternImage prediction (d) Ground Truth

Figure 4. A comparison of inference on FoodSeg103 by the best-performing BEiT v2 and InternImage-B model.

after 160k iterations.

3.3. Performance of Models on FoodSeg103

For the BEiT v2 model, during training, the best-
performing model achieved a mIoU of 49.4 at iteration
160K. This is the strongest result reported on FoodSeg103,
representing a new state-of-the-art for food segmentation
on the dataset. On the other hand, for the InternImage-B

model, during training, the best-performing model achieved
a mIoU of 41.1 at iteration 48k. Table 3 shows the perfor-
mance of these models in contrast to the other models previ-
ously applied to FoodSeg103. BEiT v2 Large outperforms
the prior state-of-the-art model and uses less parameters.

Figure 4 shows a visual comparison of segmentation
mask predictions made by our trained models. Although
both models make good segmentation prediction masks,



these randomly selected testing cases prove to be challeng-
ing in terms of detecting food items. For example, on
second row, the InternImage model failed to segment the
food item on the top left corner. In the third example, the
BEiT model failed to segment meat chunks from neighbor-
ing food items. In the last example, both models were only
able to segment parts of the bacon in the burger.

4. Discussions
Several challenges affect the performance of the model

in food image segmentation. The distribution of ingredi-
ents in food image segmentation is long-tailed, resulting
in sparse data for ingredients in the long-tail, and thus, the
model poorly predicts these categories. In the FoodSeg103
dataset used, we identified several problematic foods in
the long-tail that the model struggled to segment correctly.
hamburger appeared 7 times in the training set and 1 time
in the test set, pudding appeared 5 times in the train set and
1 time in the test set, and kelp appeared 4 times in the train
set and 5 times in the test set. These foods posed difficulty
for each model. Figure 4 shows an example of a hamburger,
which both models struggle to accurately segment.

A second challenge unique to food is the degree of inter-
class similarity and intra-class variability. Each class in
food images represents a food ingredient that can be pre-
pared in numerous ways, resulting in a wide variation in
appearance. This can also lead to visually similar-looking
foods being mistaken for each other. This can be seen in
Figure 3 and Table 4, where a visually similar filet mignon
and pork chop are tokenized similarly. The models must
be capable of understanding that a food ingredient prepared
in any way is still the same food, while also differentiating
between similar-looking foods [15, 16, 28].

Owing to the superior abilites of Transformers, BEiT ex-
hibited strong improvement over the state-of-the-art, while
the performance of InternImage plateaued at a lower mIoU.
One factor we can attribute this to is the global recep-
tive field of Transformers. Even though InternImage uses
learnable deformable convolutions, its kernel size is still
restricted to 3 × 3, which prevents InternImage from hav-
ing the same level of global understanding as BEiT. Global
context undoubtably gives valuable insight into categoriz-
ing pixels, as certain food items are more common to oc-
cur alongside other specific food items. Another factor
we may attribute BEiT v2’s performance to is the use of
vector-quantized knowledge distillation to train a tokenizer
for BEiT’s pretraining reconstruction targets. This pre-
training routine endows BEiT v2 with a stronger grasp of
the dataset semantics than InternImage, as the continuous,
high-dimensional semantic space is quantized into codes,
enabling the the model to learn a visual vocabulary through
its codebook.

Although BEiT outperformed InternImage in mIoU,

there are instances where BEiT struggles to distinguish be-
tween classes where InternImage does not. For instance, in
the third sample of Figure 4(b), BEiT groups the mashed
potato and meat together, whereas InternImage was able to
differentiate between them.

5. Conclusion
In this work, we sought to evaluate the knowledge trans-

fer capability of Transformer and convolution-based vision
backbones on the downstream task of food image segmen-
tation. We select BEiT v2 and InternImage as strong repre-
sentatives for Transformer and convolutional approaches re-
spectively. Using these representatives and the benchmark
FoodSeg103, we found that Vision Transformers have su-
perior downstream task transferability to convolutional net-
works for the task of food image segmentation.

For future direction, pre-training BEiT v2 on Food101
could obtain stronger representations for food images than
if it were trained on ImageNet-1K [1, 22]. Furthermore, the
multi-modal capabilities of BEiT-3 could be used to obtain
even stronger food representations [26].
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