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Abstract

Large scale Vision Language (VL) models have shown
tremendous success in aligning representations between vi-
sual and text modalities. This enables remarkable progress
in zero-shot recognition, image generation & editing, and
many other exciting tasks. However, VL models tend to
over-represent objects while paying much less attention to
verbs, and require additional tuning on video data for best
zero-shot action recognition performance. While previous
work relied on large-scale, fully-annotated data, in this
work we propose an unsupervised approach. We adapt a
VL model for zero-shot and few-shot action recognition us-
ing a collection of unlabeled videos and an unpaired action
dictionary. Based on that, we leverage Large Language
Models and VL models to build a text bag for each unla-
beled video via matching, text expansion and captioning.
We use those bags in a Multiple Instance Learning setup
to adapt an image-text backbone to video data. Although
finetuned on unlabeled video data, our resulting models
demonstrate high transferability to numerous unseen zero-
shot downstream tasks, improving the base VL model per-
formance by up to 14%, and even comparing favorably to
fully-supervised baselines. The code will be released later
at https://github.com/wlin-at/MAXI.

1. Introduction
Vision Language (VL) models [6, 10, 14] have met un-

precedented success in unlocking many vision applications
[14] to work with potentially unlimited open vocabularies,
through the promise of zero-shot transfer [4,9,15,17,23,25–
27]. This is empowered by the alignment between visual
and language representation spaces, which is effectively at-
tained by VL models leveraging huge amounts of paired im-
age and text data. Incorporating a VL model as a source
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(base) model or as an architectural component has allowed
scaling finetuning on relatively small datasets (e.g. lim-
ited in terms of the number of observed objects or other vi-
sual concepts compared to the vast VL pretraining) towards
zero-shot transfer at inference time. Such zero-shot trans-
fer includes recognizing [23, 25, 26], detecting [4, 17, 27],
segmenting [9,15], and even generating [18] objects unseen
during the finetuning stage and only encountered for the first
time at the inference stage.

However, despite the progress in zero-shot image tasks,
VL models have been observed to underperform when ap-
plied to zero-shot action recognition on video data without
any finetuning [2,7,12,16,20,21]. A possible reason, as ex-
tensively studied in several works [5, 19, 22, 24], is that VL
models have a tendency to mostly represent objects (nouns)
and not actions (verbs or verb phrases). Therefore, to deal
with these shortcomings of VL models w.r.t. zero-shot ac-
tion recognition, previous works [2, 7, 12, 16, 20, 21] have
used datasets with full annotation (e.g. K400 [8]) to fine-
tune VL models (e.g. the most popular CLIP [14]) towards
improved video zero-shot recognition performance. The
potential downsides of this approach are: (i) reliance on
full annotation of large-scale action datasets that is time-
consuming and cost-intensive, and (ii) the exposure of the
model to only the limited action vocabulary during the su-
pervised finetuning (e.g. 400 actions of K400 vs. over
8K possible single verb actions and much more possible
general actions in English language) limiting the perfor-
mance of zero-shot transfer to unseen action categories. In
this context, we propose ‘MAtch, eXpand and Improve’
(MAXI) – to allow finetuning on completely unlabeled
video data (e.g. unlabeled K400 [8]) and a set of language
sources, such as unpaired action dictionaries, Large Lan-
guage Models (LLM) (e.g. GPT-3 [1]), and VL models for
matching (e.g. CLIP [14]) and captioning (e.g. BLIP [10]).
To this end, MAXI relies on individual bags of potential
texts, collected and refined based on the different language



sources, that correspond to each video in the unlabeled set.
It then applies Multiple Instance Learning (MIL) for fine-
tuning the VL model using those bags. We extensively eval-
uate MAXI on seven downstream zero-shot and few-shot
transfer action recognition benchmarks completely unseen
during training. We show that MAXI is effective in leverag-
ing unlabeled video data, not only significantly (up to 14%)
improving the source VL model performance on all of those
tasks, but also favorably competing with state-of-the-art su-
pervised methods trained on fully supervised counterparts
of the same finetuning data, and even improving upon them
in some zero-shot and few-shot action recognition transfer
tasks.

Our contributions are as follows: (i) we propose MAXI,
an approach that leverages an unlabeled video collection
and a set of language sources to improve downstream zero-
shot action recognition; (ii) we propose to match each un-
labeled video with text bags of knowledge mined from the
language sources, and employ Multiple Instance Learning
for finetuning a VL model using these text bags; (iii) we
extensively evaluate our approach on seven unseen action
recognition benchmarks, and demonstrate up to 14% abso-
lute zero-shot performance improvements over the source
VL model, and even outperform baseline models trained in
a fully supervised manner on the same data.

2. Method
In this work, we propose an approach that effectively

leverages a collection of unlabeled videos and a predefined
action dictionary (a potentially noisy collection of possible
action text labels) to finetune the CLIP model without any
ground truth annotations. The purpose of finetuning is to
adapt CLIP to video data and to facilitate subsequent Zero-
Shot (ZS) transfer to video recognition tasks on novel video
categories which are not seen during training. We denote
the predefined action dictionary as D, and the unlabeled
video collection as V = {xj |j ∈ I}, with an index set
I = {1, ..., NV }.

Our pipeline is illustrated in Fig. 1. We first adapt the
CLIP image encoder to a video encoder for deployment on
video data (Sec. 2.1). Second, given the unlabeled video
collection V and a predefined action dictionary D, we use
different language sources to construct a text bag for each
video (Sec. 2.2). The text bag is a (noisy) collection of texts
that potentially correspond to the video contents. Third, we
perform Multiple Instance Learning (MIL) to learn from the
unlabeled videos and noisy text bags (Sec. 2.3), which al-
lows to robustly finetune CLIP in an unsupervised manner.

2.1. CLIP on Video Data

CLIP [14] consists of a visual encoder ϕv(·; θv) and a
text encoder ϕt(·; θt). We aim to adapt the CLIP image
encoder for processing videos. It is demonstrated in [16]

that frame-level processing on CLIP image encoder with
feature pooling helps in implicitly modeling the temporal
cues. This also leads to improved performance over related
approaches that additionally incorporate learnable spatio-
temporal components. Therefore, following [16], given a
video x, we pass M frames into the visual encoder and
compute the average of frame features as the video rep-
resentation, i.e. zv =

∑
m ϕv(x

F
m; θv)/M . An advan-

tage of this paradigm is that the network can be initial-
ized directly from a large-scale pretrained VL model (e.g.
CLIP pretrained on 400M web image-text pairs [14]) with-
out adding any randomly initialized parameters. This pro-
vides a good starting point with reasonable initial perfor-
mance before finetuning. We also explore extending a non-
randomly-initialized-parameters paradigm to include, e.g.,
a parameter-free temporal-aware module (see supplemen-
tary), confirming [16] that a sophisticated temporal module
does not lead to better video adaptation from CLIP.

During inference, given a set of class prompts C =
{tc|NC

c=1}, the text feature is computed as ztc = ϕt(tc; θt).
For simplicity, we denote the L2-normalized video feature
and text feature as zv = ϕ̄v(x) and zt = ϕ̄t(t). The
zero-shot classification is performed by selecting the class
prompt with the maximum similarity to the video represen-
tation, i.e., ĉ = argmaxc ϕ̄v(x)

⊤ϕ̄t(tc).

2.2. Text Bag Construction

Given an unlabeled video collection V and a predefined
action dictionary D (where each item is a short sentence or
a verb phrase describing an action, see Fig. 1), we construct
a text bag Ti for each video xi ∈ V , i.e. a noisy collection
of text prompts describing the video contents.
Predefined action dictionary. In a practical scenario, we
usually expect to have coarse prior knowledge of the po-
tential action types in an unannotated video collection. The
prior knowledge defines the action dictionary. To have a
reasonable action dictionary, we include category names of
the action dataset we use for finetuning CLIP. However, the
prior knowledge we could obtain in a practical case might
not be completely accurate. Therefore, we also explore two
cases of noisy action dictionary: a) an under-specified dic-
tionary comprised of only part of possible actions in the set,
and b) an over-specified dictionary - adding noisy verbs and
verb phrases randomly collected from another text corpus.
An evaluation of these settings is given in supplementary.
CLIP matching. For a video xi ∈ V , we use the original
CLIP to match xi with texts in D w.r.t the cosine similarity.
We denote the Top-1 matched text as

t̂i = argmax
t∈D

sim(ϕv(xi), ϕt(t)) (1)

where sim(u, v) = uTv/(∥u∥∥v∥) is the cosine similarity.
We include t̂i in the text bag Ti.
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Figure 1. Pipeline of MAXI. Given an unlabeled video collection and a predefined action dictionary, we construct a text bag for each video. We finetune CLIP by passing the
video and text bag through the adapted CLIP video encoder (Sec. 2.1) and CLIP text encoder, and optimizing with the Multiple-Instance Learning objective (Sec. 2.3). The text
bag construction (Sec. 2.2) for an unlabeled video consists of (1) CLIP matching (2) GPT-3 text expansion and (3) BLIP captioning for video to text expansion.

Method gt language vis.encoder frames UCF101 HMDB51 K600 Top1 K600 Top5

ER-ZSAR [3] yes Manual description TSM 16 51.8 ± 2.9 35.3 ± 4.6 42.1 ± 1.4 73.1 ± 0.3
JigsawNet [13] yes Manual description R(2+1)D 16 56.0 ± 3.1 38.7 ± 3.7 - -

ActionCLIP [20] yes K400 dict. ViT-B/16 32 58.3 ± 3.4 40.8 ± 5.4 66.7 ± 1.1 91.6 ± 0.3
XCLIP [12] yes K400 dict. ViT-B/16 32 72.0 ± 2.3 44.6 ± 5.2 65.2 ± 0.4 86.1 ± 0.8

A5 [7] yes K400 dict. ViT-B/16 32 69.3 ± 4.2 44.3 ± 2.2 55.8 ± 0.7 81.4 ± 0.3
ViFi-CLIP [16]* yes K400 dict. ViT-B/16 16 74.9 ± 0.6 50.9 ± 0.7 67.7 ± 1.1 90.8 ± 0.3
ViFi-CLIP [16] yes K400 dict. ViT-B/16 32 76.8 ± 0.7 51.3 ± 0.6 71.2 ± 1.0 92.2 ± 0.3
Text4Vis [21] yes K400 dict. ViT-L/14 16 - - 68.9 ± 1.0 -

CLIP [14] no - ViT-B/16 16 69.9 ± 1.3 38.0 ± 1.7 63.5 ± 0.4 86.8 ± 0.4
MAXI no K400 dict. ViT-B/16 16 76.6 ± 0.9 50.5 ± 0.9 70.4 ± 0.8 91.5 ± 0.3
MAXI no K400 dict, GPT3 verbs ViT-B/16 16 77.8 ± 0.3 51.6 ± 0.9 71.6 ± 1.0 92.3 ± 0.3
MAXI no K400 dict, GPT3 verbs ViT-B/16 16/32 77.8 ± 0.5 51.9 ± 1.1 71.6 ± 1.0 92.4 ± 0.3
MAXI no K400 dict, GPT3 verbs, BLIP verbs ViT-B/16 16 78.2 ± 0.8 52.2 ± 0.6 71.4 ± 0.9 92.5 ± 0.3
MAXI no K400 dict, GPT3 verbs, BLIP verbs ViT-B/16 16/32 78.2 ± 0.8 52.3 ± 0.7 71.5 ± 0.8 92.5 ± 0.4

Table 1. Zero-shot action recognition on UCF101, HMDB51 and K600. We report mean and standard deviation of results on three official validation splits. All models (except
for the original CLIP) are trained on K400. We set the text bag filtering ratio p to 90%. We train with 16 frames per video and report single-view inference results with 16 and 32
frames here. *denotes our re-evaluation.

Method gt language Charades MiT MiniSSv2 UAV

ViFi-CLIP [16] yes K400 dict. 25.77 21.68 / 44.19 5.98 / 19.04 4.67 / 15.18

CLIP [14] no - 19.80 20.11 / 40.81 3.96 / 14.42 1.79 / 7.05
MAXI no K400 dict. 23.47 21.94 / 45.68 5.19 / 17.71 2.42 / 8.39
MAXI no K400 dict., GPT3 verbs 23.74 22.11 / 45.79 5.60 / 16.73 2.77 / 9.07
MAXI no K400 dict., GPT3 verbs, BLIP verb 23.79 22.91 / 46.38 6.37 / 18.73 2.72 / 9.00

Table 2. Zero-shot action recognition on Charades, MiT, MiniSSv2 and UAV. All models (except for CLIP) are trained on K400. We report the mAP of multi-label classification
on Charades and Top-1/Top-5 single-label classification accuracy for MiT, MiniSSv2 and UAV. We set the text bag filtering ratio p to 90%.

The CLIP matching is a means of distilling knowledge
from the original CLIP as the teacher. Common choices of
unlabeled video collection V are usually of much smaller
scale than the original CLIP domain and might be prone
to overfitting. Using knowledge from the original CLIP
prevents the model from overfitting to the smaller domain
V , preserving the generalizability learned in the pretraining
stage of CLIP.

GPT-3 text expansion. We expand the text bag by leverag-
ing the large-scale language model (LLM) GPT-3 [1]. We
build upon the fact that GPT-3 has high performance on lan-
guage instruction tasks [1]. By providing the best-matched
text t̂i in the instruction for LLM requiring it to describe this
text using its language (world) knowledge (see instruction
example in Fig. 1), we obtain a collection of expanded alter-
native descriptions of the action. The descriptions contain



details hallucinated by the LLM leveraging its collective
world knowledge. We collect the verbs and verb phrases
extracted from the generated expanded action descriptions.
Furthermore, we perform text augmentation by including
both the lemma and gerund (present participle) forms of the
verbs. We add the collection of words to the text bag Ti.
BLIP captioning for video to text expansion. We employ
the vision-language model BLIP [10] for generating cap-
tions of individual frames on a video. Note that this image
captioning model is not pretrained on any video domain.
The frame captions provide instance-level descriptions that
are dependent on the visual content of frames of the unla-
beled videos. Similar to the case of GPT-3 text expansion,
we collect verbs and verb phrases from these descriptions,
and perform text augmentation (as stated above), adding the
resulting texts to the text bag Ti.
Filtering text bags. To improve the quality of the text
bags, we set a threshold δp on the similarity score from
CLIP matching. We determine δp such that p × 100% of
videos (or text bags) remain after thresholding. For video
xi ∈ V , we keep the corresponding text bag Ti if the best
matched text t̂i has a similarity above the threshold, i.e.
sim(ϕv(xi), ϕt(t̂i)) ≥ δp. The filtering results in a sam-
pled index set Ip = {i | sim(ϕv(xi), ϕt(t̂i)) ≥ δp,∀i ∈ I}
and video set Vp = {xi | i ∈ Ip}.

2.3. Multiple Instance Learning

We employ Multiple Instance Learning (MIL) to learn
from the unlabeled videos and noisy text bags collected
above. The MIL-NCE loss proposed in [11] combines Mul-
tiple Instance Learning and Noise Contrastive Estimation.
Following MIL-NCE, instead of enforcing the match of one
specific positive text to each video, we softly associate a text
bag Ti with each video xi ∈ V , in which one or multiple
texts could be a positive match to the video. As different
videos have varying numbers of texts in bag, we randomly
sample Nbag texts from the original bag in each training it-
eration. We refine the definition of the sampled text bag Ti

as Ti = {ti,n|
Nbag
n=1}, where Nbag is the constant bag size.

The original MIL-NCE loss encourages the instance-
level match between each video and its corresponding text
bag. In this work, we further propose to encourage the
videos and text bags, which have the same best matched
text, to be close to each other. Noting that each video xi has
a best matched text t̂i in the dictionary from CLIP matching
step, than our proposed loss is

L = − 1

|IB |
∑
i

log

∑
j

∑
n exp(ϕ̄v(xi)

⊤ϕ̄t(tj,n)/σ) · 1(t̂i = t̂j)∑
k

∑
n exp(ϕ̄v(xi)⊤ϕ̄t(tk,n)/σ)

(2)
where i, j, k ∈ IB and n ∈ {1, ..., Nbag}. IB ⊂ Ip is a
sampled batch of indices. tj,n ∈ Tj is text in a text bag,
and σ is a temperature parameter for contrastive learning.

1(t̂i = t̂j) is an indicator that xi and xj have the same best
matched text.

3. Results of Zero-Shot Action Recognition
We finetune CLIP on the large-scale K400 dataset

stripped of the original ground truth labels. We perform
zero-shot action recognition on seven different datasets to
verify that cross-dataset model generalizability transfer af-
ter the finetuning. In zero-shot setting, the model is eval-
uated directly on downstream datasets with unseen classes,
without being trained on any samples of these datasets.

In Table 1, we first compare to other state-of-the-art
methods, all of which use K400 to adapt CLIP models for
zero-shot recognition tasks on UCF, HMDB and K600. Fol-
lowing [3, 12, 16], we report the mean and standard devia-
tion of results on three official validation sets. ER-ZSAR [3]
and JigsawNet [13] are zero-shot action recognition ap-
proaches that train with K400 ground truth annotations.
They leverage crawled descriptions of action classes with
manual correction, which requires efforts from human an-
notators. Afterwards, the class descriptions are assigned to
videos based on ground truth annotations. We see that the
original CLIP has good direct zero-shot performance across
the three datasets, which performs better or on par with ER-
ZSAR [3] and JigsawNet [13]. The rest of the compared ap-
proaches all adapt CLIP models on video-text pairs with the
K400 ground truth class labels as texts. Among them, the
most recent ViFi-CLIP [16] achieves the best result, outper-
forming all the other approaches, without adding any learn-
able spatio-temporal modules (as done by other approaches
such as [7, 12, 20]).

In a similar full finetuning paradigm to ViFi-CLIP,
MAXI achieves favorable results without using any ground
truth annotation. We report the performance of MAXI with
different combinations of language sources. Simply with
the original K400 action dictionary, we already outperform
most of the related work across the three datasets. With the
additional GPT-3 verbs and BLIP verbs in the text bag, we
further boost the performance, achieving the state-of-the-art
among the three datasets.

For a thorough analysis of the model generalizibility, we
further report the performance of MAXI on four datasets
(Charades, MiT, MiniSSv2 and UAV) with larger domain
shift to K400 in Table 2. In comparison to the original
CLIP, our finetuned model has improved zero-shot trans-
fer on all datasets. With the additional language sources of
GPT-3 and BLIP, we even outperform ViFi-CLIP trained
with ground truth of K400, on the challenging MiT and
MiniSSv2 datasets.

In supplementary, we provide dataset statistics, attention
map visualizations, evaluations of few-shot action recogni-
tion, ablation studies of text bag filtering, noisy action dic-
tionary, strategies of learning from words in a text bag.
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