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Figure 1. In this work, we present ESS, a method for fine-grained event-based semantic segmentation. Due to the novelty of the sensor,
only few datasets for event cameras are available. For this reason, we leverage existing image-based datasets for training neural networks
for events using a novel UDA approach. Compared to existing methods, our approach does not require video or paired data and does not
need to hallucinate motion to construct events. Our method can detect fine-grained objects, such as cars and pedestrians, outperforming
state-of-the-art methods in UDA and supervised settings, on a common benchmark and our newly created benchmark with high-quality
labels (right).

Abstract

Retrieving accurate semantic information in challenging
high dynamic range (HDR) and high-speed conditions re-
mains an open challenge for image-based algorithms due
to severe image degradations. Event cameras promise to
address these challenges since they feature a much higher
dynamic range and are resilient to motion blur. Nonethe-
less, semantic segmentation with event cameras is still in
its infancy which is chiefly due to the lack of high-quality,
labeled datasets. In this work, we introduce ESS (Event-
based Semantic Segmentation), which tackles this problem
by directly transferring the semantic segmentation task from
existing labeled image datasets to unlabeled events via un-
supervised domain adaptation (UDA). Compared to exist-
ing UDA methods, our approach aligns recurrent, motion-
invariant event embeddings with image embeddings. For
this reason, our method neither requires video data nor
per-pixel alignment between images and events and, cru-
cially, does not need to hallucinate motion from still images.
Additionally, we introduce DSEC-Semantic, the first large-
scale event-based dataset with fine-grained labels. We show

*equal contribution.

that using image labels alone, ESS outperforms existing
UDA approaches, and when combined with event labels, it
even outperforms state-of-the-art supervised approaches on
both DDD17 and DSEC-Semantic. Finally, ESS is general-
purpose, which unlocks the vast amount of existing labeled
image datasets and paves the way for new and exciting re-
search directions in new fields previously inaccessible for
event cameras.

Multimedia Material The code is available at https:
//github.com/uzh-rpg/ess, dataset at https:
//dsec.ifi.uzh.ch/dsec-semantic/ and video
at https://youtu.be/Tby5c9IDsDc

1. Introduction

In recent years, event cameras have become attractive
sensors in a wide range of applications, spanning both com-
puter vision and robotics. In particular, thanks to their high
dynamic range, microsecond-level latency, and resilience to
motion blur, algorithms leveraging event data have made
various breakthroughs in fields such as Simultaneous Lo-
calization and Mapping (SLAM) [23, 29], computational
photography [21,25] and high-speed obstacle avoidance [8].

1

https://github.com/uzh-rpg/ess
https://github.com/uzh-rpg/ess
https://dsec.ifi.uzh.ch/dsec-semantic/
https://dsec.ifi.uzh.ch/dsec-semantic/
https://youtu.be/Tby5c9IDsDc


Recently, event cameras have been increasingly applied in
automotive settings [17,19,20], where they promise to solve
computer vision tasks in challenging edge-case scenarios,
such as when exiting a tunnel into bright sunlight [13, 21]
or when children unexpectedly jump in front of a car.

For the latter, extracting detailed and dense semantic in-
formation is essential for any automotive safety system. In
particular, event-based semantic segmentation promises to
significantly improve the reliability and safety of these sys-
tems by leveraging the robustness to lighting conditions and
the low latency of event cameras. However, due to the nov-
elty of the sensor, event-based semantic segmentation is still
in its infancy, resulting in a lack of high-quality event-based
semantic segmentation datasets. While some datasets ex-
ist [1, 12], these are either synthetic or feature pseudo la-
bels, which are produced by an image-based network run-
ning on low-quality grayscale images. As a result, methods
trained on these datasets typically exhibit suboptimal per-
formance [1, 27].

In this work, we make significant strides toward high-
quality event-based semantic segmentation by addressing
the above limitation on two fronts: First, we generate a new
event-based semantic segmentation dataset, named DSEC-
Semantic, based on the stereo event camera dataset for driv-
ing scenarios (DSEC) [13]. The labels are generated via
pseudo-labeling on high-quality RGB images and filtered
by manual inspection. Second, we introduce ESS, a novel
unsupervised domain adaptation (UDA) method specifi-
cally tailored to event data, which transfers a task from a
labeled image dataset to an unlabeled event domain, see
Fig. 1. Compared to other methods, it does not require video
data [10] or per-pixel paired events and images [14,27] and
does not need to hallucinate motion-imbued events from
still images [18]. In fact, generating events from single im-
ages remains an ill-posed problem that so far has only been
studied via adversarial learning, which is prone to mode
collapse. Instead, our method produces a recurrent, motion-
invariant event embedding, which is aligned with image em-
beddings during the training process, facilitating the trans-
fer between domains.

We perform extensive evaluation both on the existing
DDD17 [1, 3] benchmark and our new DSEC-Semantic
benchmark. On DDD17, we report a 6.98% higher mean in-
tersection over union (mIoU) compared to other UDA meth-
ods, and when using additional event labels, ESS outper-
forms supervised methods by 2.57%. On DSEC-Semantic,
we show a 4.17% higher mIoU when compared to other
UDA approaches. Additionally, when combined with su-
pervised learning, our method achieves 1.53% higher mIoU
than other state-of-the-art supervised methods. Our contri-
butions can be summarized as follows:

1. We present a UDA method that leverages image
datasets to train neural networks for event data. It does

this by directly aligning recurrent, motion-invariant
event embeddings with image embedding without re-
quiring paired data, video, or explicit event generation.

2. We show that our method outperforms existing state-
of-the-art UDA and supervised methods both on an ex-
isting and our newly introduced benchmark.

3. We contribute a new high-quality dataset for event-
based semantic segmentation, based on high-quality
RGB frames from the large-scale DSEC dataset.

Finally, since ESS is general-purpose, it unlocks the virtu-
ally unlimited supply of existing image datasets, thereby de-
mocratizing them for event camera research. These datasets
will pave the way for new and exciting research directions
in new fields which were previously inaccessible for event
cameras.

2. Related Work
2.1. Event-based Semantic Segmentation

The first work to use events for the task of semantic seg-
mentation was [1], which also introduced the first event-
based semantic segmentation dataset based on the driving
dataset DDD17 [3]. It used an Xception-type network [5]
to show robust performance in edge-case scenarios, where
standard images are overexposed. The semantic labels (also
known as pseudo-labels) on DDD17 were generated by a
pre-trained network running on the grayscale frames of the
DAVIS346B [4]. This sensor features per-pixel aligned
events and frames and has been useful for a variety of do-
main adaptation works. However, it has a low resolution
and poor image quality, which results in significant artifacts
in the resulting pseudo labels. Additionally, due to the low
resolution of the DAVIS346B, multiple classes need to be
merged, reducing the granularity of the labels. In parallel,
the simulated EventScape dataset [13, 15] includes high-
quality semantic labels but was recorded in the CARLA
simulator [7], and thus exhibits a sim-to-real gap.

Follow-up work by [10] improved on the results of [1]
by leveraging additional labeled video datasets for events
by augmenting training data with synthetic events converted
from video. While this method allows networks to be
trained on synthetic and real events resulting in a signifi-
cant performance boost, it requires the availability of video
datasets, which are not as common as datasets containing
still images and are especially rare for semantic segmenta-
tion. For this reason, [27] combines labeled image datasets
such as Cityscape [6] with unlabeled events and frames
from a DAVIS to decrease the dependence on video data.
In fact, they report an increase in the semantic segmenta-
tion performance but still rely on per-pixel paired data from
a DAVIS for successful transfer. Another supervised se-
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mantic segmentation method [26] leverages the event-to-
image transfer to help with the task of semantic segmen-
tation. However, they rely on a labeled event dataset and do
not consider recurrent event embeddings. Our method also
leverages UDA for event-based semantic segmentation but
differs from existing work in a few key points: (i) it only
leverages datasets of still images, (ii) does not require per-
pixel paired events and frames, and (iii) uses a recurrent net-
work to generate motion-invariant event embeddings. Since
UDA methods have become instrumental for event-based
semantic segmentation, we review them next.

2.2. Unsupervised Domain Adaptation

A common challenge for novel sensors such as event
cameras is the lack of labeled datasets. To tackle this
challenge, multiple works try to leverage labeled images
to train networks for event cameras. This transfer from a
labeled source domain (images) to an unlabeled target do-
main (events) is generally defined as Unsupervised Domain
Adaption (UDA).

Event-to-image reconstruction methods [2, 21, 22] were
the first to address this setting. Most recently, E2VID [21]
uses a recurrent network to convert events to video, which
can then be processed with standard image-based networks.
It, however, requires the overhead of converting events first
to images and does not leverage unlabeled target events to
help the task transfer from images to events. Instead of go-
ing from events to frames, VID2E converts labeled video
sequences to event sequences. The synthetic events can then
be used to train a network on the corresponding image la-
bels, which transfers to real events. While this reduces the
overhead of needing to convert events to video, it still can-
not adapt to an unlabeled event domain. Moreover, it re-
quires labeled video datasets, which excludes the majority
of existing image datasets.

One of the first approaches to do explicit domain adapta-
tion was network grafting [14], which replaces the encoder
of a pre-trained image network with an event encoder, and
finetuning it with paired events and images. However, it
needs to be trained with a consistency loss, which requires
paired event and image data, and is thus not be applicable in
the UDA setting. Moreover, this constraint limits the kind
of datasets that can be leveraged to those recorded with per-
pixel aligned events and frames, which excludes most ex-
isting image datasets. EvDistill [27] lifted this limitation
by instead leveraging unpaired events and images, with un-
labeled events and labeled images. While this approach
could transfer from unpaired Cityscapes labels to events
from DDD17, they only report the segmentation perfor-
mance based on paired images and events. Strictly speak-
ing, this can thus not be considered as a UDA method. In-
stead, a pure UDA method for image-to-event transfer is
[18], which splits the embedding space into motion-specific

features and features shared by both image and events. They
use adversarial learning to align image and event embed-
ding spaces for the task of classification and object de-
tection. However, this approach relies on generating fake
events, which requires the hallucination of motion from
still images. This hallucination is ill-posed and thus hin-
ders the feature alignment, which is crucial for a successful
task transfer from images to events. Our method, ESS, ad-
dresses these limitations by transferring from single images
to events without the need for hallucinating motion. This
task transfer is achieved by generating motion-invariant
event embeddings, leveraging the pre-trained E2VID [21]
encoder which are then aligned with the embedding space
of single images via a dedicated image encoder. Since the
resulting event embeddings do not contain motion informa-
tion, they can be easily aligned in the embedding space, fa-
cilitating task transfer.

3. Approach

Our method transfers a task from a labeled source do-
main I = {(Ii,Li)}Mi=1 to an unlabeled target domain E =
{Ei}Ni=1. More specifically, the source domain I consists of
images Ii ∈ RH×W and labels in form of semantic maps
L ∈ ZH×W

c , where c is the number of classes. The event
domain E consists of data recorded by an event camera.
Event cameras have independent pixels which trigger each
time the log brightness changes by a fixed threshold. The
resulting data is an asynchronous stream, Ei = {ei,j}ni

j=1

made up of temporally ordered events ei,j , each encoding
the pixel coordinate xi,j , timestamp with microsecond-level
resolution ti,j and polarity pi,j ∈ {−1, 1} of the brightness
change. For more information about the working principles
of event cameras, see [9].

The goal of our approach is to train a neural network
F which takes event sequences1 E as input and outputs the
task variable in form of pixel-wise semantic predictions L.
At training time, it only has access to image labels from the
source domain I, but can leverage unlabeled events from the
target domain E.

An overview of our method is shown in Fig. 2. Our
method works by first encoding events into a motion-
invariant embedding zevent using the E2VID [21] encoder
EE2VID and decoding these to an image reconstruction us-
ing the decoder DE2VID. This event embedding preserves
sufficient semantic information for the segmentation task
but excludes motion information since it is used to recon-
struct motion-invariant still images. The image reconstruc-
tion and events then formulate a pseudo pair in the source
and target domain, which can be leveraged to align the em-
bedding space. Consequently, we use an image encoder
Eimg to approximate the motion-invariant embedding. Fi-

1For clarity, we omit the subscript i in the future.
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Figure 2. Our method ESS, performs unsupervised domain adaptation by leveraging labeled image datasets (source domain, left) to train
networks for event cameras in an unlabeled target domain (right). In the source domain, it performs supervised learning on the task
network while not training the image encoder. In the event-domain, it uses the recurrent E2VID encoder to produce motion-invariant event
embeddings, which are decoded and reencoded using the image encoder. Various consistency losses align these embeddings, forcing the
image encoder to behave similarly to the event encoder. In this stage, both task and image encoder is trained. At test-time ESS simply uses
the E2VID encoder and task decoder for prediction, and thus remains lightweight.

nally, a shared task network T generates task predictions
from image and event embeddings.

3.1. Network Overview

In a first step, we convert an event stream E to a sequence
of grid-like representations [11], such as voxel grids [30]
Vk. Each voxel grid is constructed from non-overlapping
windows with a fixed number of events, see supplementary
for more details. Next, we produce a recurrent, multi-scale
embedding zevent, with

zkevent = EE2VID(Vk, z
k−1
event), k = 1, ..., N, (1)

and zevent = zNevent. Simultaneously, we train an im-
age encoder Eimg which produces image embeddings
zimg = Eimg(I). These embeddings are used in three
branches of the training framework, see Fig. 2. First, we
use the image and event embeddings to produce a task pre-
diction via a task network T

Limg = T (zimg) and Levent = T (zevent), (2)

with Limg/event ∈ RH×W×c. Second, we also use the event
embedding to generate an image reconstruction via the de-
coder DE2VID, as Î = DE2VID(zevent), which results in a
pseudo pair (Î , E) in the source and target domain. Finally,
Eimg reencodes the resulting image and produces a task pre-
diction

ẑimg = G (DE2VID(zevent)) and L̂img = T (ẑimg). (3)

Details of DE2VID, EE2VID, Eimg and T are given in the sup-
plementary. In the following, we explain how the alignment
of the motion-invariant embeddings is enforced by multiple
consistency losses. This alignment is crucial since it en-
sures that the task decoder T can be applied in the event
and image domain.

3.2. Aligning Motion-Invariant Embedding

With pseudo pairs (Î , E) in the source and target domain,
our method leverages several consistency losses to align the
motion-invariant embeddings. Inspired by prior works [18,
27], we enforce an alignment between event embeddings
and reencoded event embeddings via an L1 distance and
between task predictions via the symmetric Jensen-Shannon
divergence

Lcons. emb. = ∥zevent − ẑimg∥1 (4)

Lcons. pred. =
1

2
DKL(T (zevent)∥T (ẑimg)) (5)

+
1

2
DKL(T (ẑimg)∥T (zevent)). (6)

Furthermore, we tighten the alignment by minimizing the
L1 distance between intermediate features T (i)(zevent) and
T (i)(ẑimg) produced while decoding the embeddings zevent
and ẑimg resulting in the following loss

Lcons. task =
∑
i

∥∥∥T (i)(ẑimg)− T (i)(zevent)
∥∥∥
1
. (7)

3.3. Losses and Optimization

At each training step, we additionally compute the task
loss in form of the cross-entropy and Dice loss in the image
domain by leveraging the available labels L,

Ltask = CrossEntropy(T (zimg),L) + Dice(T (zimg),L).
(8)

Finally, we sum up the task loss and the consistency losses

Ltotal = λ1Ltask+λ2Lcons. emb.+λ3Lcons. pred.+λ4Lcons. task,
(9)

where λ1, λ2, λ3, and λ4 are the hyper-parameters.
Optimization We perform a two-stage network gradient ac-
cumulation for each optimization step, shown in Fig. 2.
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During the first stage (left), we use an image and label pair
to compute the task loss, which we only use to update the
network gradients of the task decoder T . During the second
stage (right), we train on unlabeled events. Here, we freeze
the E2VID encoder/decoder pair and the task network in
the second branch (Fig. 2, top right). After computing the
consistency losses, we accumulate the gradients for the im-
age encoder Eimg and the task decoder T in the first branch.
We perform one parameter update step on the network after
accumulating these gradients.

4. Experiments
We start off in Sec. 4.1, by validating our method on the

commonly used DDD17 benchmark [1], where we compare
against supervised [1,26], pixel-wise paired [27], and UDA
methods [10, 18, 21]. We then introduce our newly gen-
erated DSEC-Semantic dataset in Sec. 4.2, which contains
higher quality semantic labels, and report comparisons on
this dataset. Finally, in Sec. 4.3 we perform ablation studies
to verify the effectiveness of the proposed design choices.
For more results, we refer to the supplementary.
Baseline Methods We compare our task transfer method
with the two state-of-the-art UDA approaches E2VID [21]
and EV-Transfer [18]. For E2VID, we take the pre-trained
network weights provided by the authors to convert events
to grayscale images. We retrain a semantic segmentation
network on labeled grayscale images from Cityscapes [6],
which we then apply to the reconstructed images. E2VID
is indeed a UDA method since it does not require a labeled
event dataset nor paired image and event data. However,
different from our method, it cannot be retrained for a spe-
cific target domain, performing zero-shot UDA.

In contrast, EV-Transfer [18] leverages unlabeled tar-
gets events for classification and object detection. To adapt
the open-source implementation to semantic segmentation,
we add the same task decoder as our method without skip
connections. We report DDD17 results for EV-Distill [27]
and DTL [26], but do not include them on DSEC-Semantic
since open-source training code is not available, and they
require paired images and events, which are not available
on that dataset. Finally, we compare against the supervised
methods VID2E [10] and EV-Segnet [1], which we retrain
on DSEC-Semantic based on open-source code.

4.1. DDD17 for Semantic Segmentation

The DAVIS Driving Dataset (DDD17) for semantic seg-
mentation targets automotive scenarios and contains 12
hours of driving data recorded with a DAVIS [4], which pro-
vides per-pixel aligned and temporally synchronized events
and gray-scale frames. In [1], they used a pre-trained Xcep-
tion network [5] to generate semantic pseudo-labels on the
DAVIS frames. Since the DAVIS only features a low res-
olution, they fuse several classes and only provide labels

Table 1. Performance of EV-Transfer, E2VID, VID2E, and our
method on DDD17 in the UDA setting, in which the labels of
Cityscapes and unlabeled events of DDD17 are available. Results
report the mean and standard deviation of 3 runs with different
random seeds except for the VID2E method which is taken from
[10].

Method Accuracy [%] ↑ mIoU [%] ↑
EV-Transfer [18] 47.37±4.53 14.91±0.61
E2VID [21] 83.24±2.60 44.77±3.70
VID2E [10] 85.93 45.48
ESS (ours) 87.86±0.57 52.46±0.63

Table 2. Results on DDD17 in the setting in which all of the avail-
able training data can be used. That includes real events with cor-
responding labels (E: events) and the possible combination with
either synthetic events based on grayscale images of DDD17 (S+E:
synthetic+events) or image labels (E+F: events+frames).

Method Training
Data

Accuracy
[%] ↑ mIoU [%] ↑

EVDistill [27] E - 58.02
EV-SegNet [1] E 89.76 54.81
VID2E [10] S+E 90.19 56.01
DTL [26] E - 58.80
ESS (ours) E 91.08 61.37
ESS (ours) S+E 90.37 60.43

for 6 merged classes: flat (road and pavement), background
(construction and sky), object, vegetation, human, and ve-
hicle. In this section, we will compare our method against
related work in two settings: (i) in the UDA setting, where
we only use unlabeled events, labeled frames and present
them to the network in an unpaired fashion, and (ii) in a
paired event and frame setting as well as in the supervised
setting, where we introduce additional labels in the event-
domain.
Implementation Details We use Cityscapes [6] as the la-
beled source domain and DDD17 as the unlabeled target
domain. The hyper-parameters λ1, λ2, λ3, and λ4 are set
as 1, 0.01, 1, and 0.01, respectively. We set the learning
rates as 1× 10−5 for Eimg and 1× 10−4 for T . We empiri-
cally found that having a smaller learning rate on Eimg and
activating the accumulation of gradients for Eimg in the first
stage help improve the results. We train our model using the
RAdam optimizer [16] with a batch-size of 16 for 50’000 it-
erations. Additionally, for the comparison with E2VID [21]
in the UDA setting, we retrain the image encoder and task
network (forming a U-Net) on grayscale images and labels
from the Cityscapes dataset [6]. Similar to our method, we
train [18] in our UDA setting with the same source and tar-
get domains. As commonly done, we report the accuracy
as well as the mean intersection over union (mIoU) on the
resulting segmentation maps, which better highlights the ac-
curacy on smaller objects.
UDA Comparison Tab. 1 shows that our method outper-
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forms the runner-up VID2E by a large margin of 6.98%
mIoU. VID2E converts DDD17 grayscale images to events
and trains on the DDD17 labels. However, it suffers from a
domain gap between synthetic and real events, which it can-
not bridge using domain adaptation. Similarly, E2VID [21]
cannot perform domain adaptation, which is why it achieves
a lower performance. EV-Transfer [18] does domain adap-
tation but is still outperformed by our method. This is be-
cause we use a recurrent event encoder, which retains mem-
ory and can thus handle static scenes, which do not trigger
events, leading to better predictions. Moreover, since our
method aligns motion-invariant event embeddings, it does
not rely on adversarial training and is therefore much sim-
pler to train. Fig. 3 shows qualitative results of the tested
methods.
State-of-the-art Comparison Here, we show that, when
combined with supervised learning, our method outper-
forms state-of-the-art methods. To do this, we add an ad-
ditional task loss during training at the first task branch
(Fig. 2, top right), which allows our method to simultane-
ously leverage image and event labels. We also compare
against supervised methods DTL [26] and EV-Distill [28],
which rely on the paired images and events provided by
the DAVIS. We report results for two variations of our ap-
proach: The first is trained using only the recurrent en-
coder and task decoder, in a supervised setting using la-
beled events (Fig. 2, event domain, top left). The second
combines supervised training on events with our full do-
main adaptation framework, including labeled images for
improved performance. These methods are labeled with
“events” and “events+frames” respectively in Tab. 2. As
reported in Tab. 2, our method outperforms the runner-up
DTL by 2.57% mIoU if trained in a supervised setting with
events. DTL is a feed-forward network, which shows that
our recurrent encoder boosts performance, especially in the
near static scenes of DDD17. An additional advantage of
our method compared to standard supervised methods is
that it can leverage image labels in combination with event
labels. From the Tab. 2, it can be observed that the addi-
tional image labels do not lead to a performance improve-
ment. In fact, this can be explained by the fact that DDD17
semantic labels are not always accurate. In several exam-
ples (see Fig. 4), we found that our method predicted objects
which were not present in the labels, but were clearly visi-
ble in the images and thus reduced the segmentation perfor-
mance. Fig. 4 shows that our method trained supervised on
events and images sometimes provides more accurate pre-
dictions than the pseudo-labels from DDD17.

4.2. DSEC-Semantic

The semantic segmentation labels for DDD17 suffer
from artifacts caused by the low-quality and low-resolution
grayscale images, see supplementary. For this reason, we

generate a new semantic segmentation dataset based on
DSEC [13]. DSEC contains 53 driving sequences collected
in a variety of urban and rural environments in Switzerland
and was recorded with automotive-grade standard cameras
and high-resolution event cameras. We use the pseudo la-
beling scheme adopted in [1] with the high-quality images
provided by the left color FLIR Blackfly S USB3 with a res-
olution of 1440 × 1080. The semantic labels are generated
by first warping the images from the left frame-based cam-
era to the view of the left monochrome Prophesse Gen3.1
event camera with a resolution of 640 × 480. We then apply
a state-of-the-art semantic segmentation method [24] to the
warped images to generate the labels. By doing so, we ob-
tain fine-grained labels for 19 classes, which we convert to
11 classes: background, building, fence, person, pole, road,
sidewalk, vegetation, car, wall, and traffic sign. Since frame
cameras suffer from image degradation in challenging illu-
mination scenes, we only label the sequences recorded dur-
ing the day, which results in 8082 labeled frames for the
training and 2809 labeled frames for the test split. For more
details, we refer to the supplementary. Compared to labels
from DDD17, our labels feature much higher quality and
more details, as visualized in the supplementary. We believe
that our generated semantic labels can also spur future work
in multi-modal semantic segmentation as the DSEC dataset
includes measurements of a LiDAR, one frame-based, and
one event-based stereo-camera pair.
Implementation Details Similar to the experiments on
DDD17, we leverage the Cityscapes datasets as the la-
beled source dataset. The difference is that we use the
DSEC-Semantic dataset as the target domain. The hyper-
parameters λ1, λ2, λ3, and λ4 are now set as 1, 1, 1, and 1,
respectively. We use the same RAdam optimizer to train our
model with a larger learning rate of 5×10−4 (for both Eimg
and T ), and a smaller batch-size of 8, for 25’000 iterations.
UDA Comparison In this setting, we compare against the
UDA methods [18, 21], which can deal with unpaired, la-
beled image and unlabeled event data. As can be observed
in Tab. 3, our method outperforms state-of-the-art UDA
methods by a margin of 4.17% mIoU. Again, our method
benefits from a recurrent architecture, and a simpler training
regime that does not rely on adversarial training. Moreover,
it can be adapted to the target domain, showing a large gap
to methods that cannot do so, such as [21]. Fig. 5 shows
qualitative examples verifying the benefits of our method.

State-of-the-art Comparison Here, we adopt the same
setting as for the DDD17, where we train our method with
a supervised task loss on training labels in the event do-
main. In this supervised setting, we compare against EV-
Segnet [1]. Additionally, we also provide results for our
method using both image and event labels during train-
ing. Without considering the image labels in the training,
our method achieves a performance comparable with EV-
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Figure 3. Qualitative samples on DDD17 for the UDA setting, i.e., no event labels are available during training. Compared to EV-Transfer
and E2VID, our method can more reliably predict smaller details such as people.

Figure 4. Predictions of EV-Segnet and our method trained once purely with event labels (events) and once also with image labels
(events+frames). Due to the low-quality of the DDD17 semantic labels, small objects are sometimes missed in the pseudo labels, (zoomed-
in and brightened image patch in the red box). These objects are more reliable detected if our method is trained on the high-quality labels
of Cityscapes. This can lead to a lower detection score on DDD17 even though the predictions of our method trained on events and frames
provide more finegrained detections.

Table 3. Performance of the UDA methods on DSEC-Semantic,
which can leverage image labels and unpaired, unlabeled event
data. Results report the mean and standard deviation of 3 runs
with different random seeds.

Method Labels Accuracy
[%] ↑ mIoU [%] ↑

EV-Transfer [18] frames 60.50±2.50 23.20±1.17
E2VID [21] frames 76.67±3.39 40.70±3.38
ESS (ours) frames 84.04±0.12 44.87±0.51

Segnet with a higher accuracy score but a slightly lower
mIoU, see Tab. 4. However, if we use the full potential of
our method by using the image labels as well, we achieve
state-of-the-art performance on DSEC-Semantic, outper-
forming EV-SegNet by 1.53% mIoU. We refer to the sup-
plementary for qualitative samples.

4.3. Ablation Studies

Loss importance To verify the effectiveness of the pro-
posed framework, we ablate the introduced loss functions
by removing them during training. Tab. 5 reports the results

Table 4. Results on DSEC-Semantic in the supervised set-
ting, where event labels (events), image labels (labels), or both
(events+frames) can be used.

Method Labels Accuracy
[%] ↑ mIOU [%] ↑

EV-SegNet [1] events 88.61 51.76
ESS (ours) frames 84.17 45.38
ESS (ours) events 89.25 51.57
ESS (ours) events+frames 89.37 53.29

of those experiments on DSEC-Semantic for the UDA set-
ting. It can be observed that omitting the consistency loss
in the embedding space, Lcons. emb., leads to a 5.56% drop
in mIoU, showing its importance to align the embedding
spaces. Similarly, omitting Lcons. pred. leads to a 1.28%, and
omitting Lcons. task. leads to a 2.09% drop, highlighting the
importance of both.
Embedding Alignment The studied UDA methods oper-
ate by aligning events and frame embeddings. For E2VID,
these embeddings are image reconstructions and images, for
EV-Transfer and our work, these are image and event em-
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Figure 5. Qualitative samples on DSEC-Semantic for the UDA setting, i.e., no event labels are available during training. Compared to
EV-Transfer and E2VID, our method can more reliably predict smaller details such as persons.

Table 5. Ablation experiments on DSEC-Semantic in the UDA
setting.

Method Accuracy [%]↑ mIoU [%]↑
w/o Lcons. emb. 80.86 39.31
w/o Lcons. pred. 83.62 43.59
w/o Lcons. task 82.50 42.78
w/o skip connect. 78.79 38.08
ESS (ours) 84.04 44.87

beddings. To study this alignment, we perform the follow-
ing comparison: On DSEC-Semantic, we construct pairs of
event and image embeddings, which we each decode to the
logits of the semantic map, T (zevent) and T (zimg). While for
EV-Transfer and our method, we use the dedicated task net-
work to decode these embeddings, for the E2VID-baseline,
we use the network trained on Cityscapes on both images
and image reconstructions, to construct paired predictions.
We then measure the consistency of these maps across pairs,
via the symmetric KL divergence. Our approach achieves a
KL divergence of 0.025, which is three times lower than the
runner-up E2VID with 0.073, and five times lower than EV-
Transfer with 0.120. This indicates that our method aligns
image and event embeddings better than other methods, fa-
cilitating domain transfer.

5. Conclusion
Event cameras promise to enhance the reliability of

autonomous systems by improving the robustness of se-
mantic segmentation networks in edge case scenarios such

as during the night or at high speeds. However, the lack of
high-quality labeled datasets currently hinders the progress
of event-based semantic segmentation. In this work, we
tackled this problem, by introducing ESS, which lever-
ages large-scale, labeled image datasets for event-based
semantic segmentation, without requiring event labels or
paired events and images. We thoroughly evaluated our
method, both on the existing DDD17 benchmark, and the
newly generated DSEC-Semantic benchmark, where we
outperform existing state-of-the-art methods in UDA and
supervised settings. DSEC-Semantic is a large-scale event-
based dataset for semantic segmentation, with high-quality,
fine-grained semantic labels, which will spur further re-
search in event-based semantic scene understanding. While
only evaluated for semantic segmentation, we believe
that these performance gains can be transferred to other
tasks. Our method unlocks the virtually unlimited supply
of image-based datasets for event-based vision, enabling
the exploration of previously inaccessible research fields
for event cameras, such as panoptic segmentation, video
captioning, action recognition etc.

Acknowledgment This work was supported by the Na-
tional Centre of Competence in Research (NCCR) Robotics
through the Swiss National Science Foundation (SNSF) and
the European Research Council (ERC) under grant agree-
ment No. 864042 (AGILEFLIGHT).

8



References
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