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Abstract

Current approaches to novelty or anomaly detection are
based on deep neural networks. Despite their effectiveness,
neural networks are also vulnerable to imperceptible defor-
mations of the input data. This is a serious issue in critical
applications, or when data alterations are generated by an
adversarial attack. While this is a known problem that has
been studied in recent years for the case of supervised learn-
ing, the case of novelty detection has received very limited
attention. Indeed, in this latter setting the learning is typ-
ically unsupervised because outlier data is not available
during training, and new approaches for this case need to be
investigated. We propose a new prior that aims at learning
a robust likelihood for the novelty test, as a defense against
attacks. We also integrate the same prior with a state-of-the-
art novelty detection approach. Because of the geometric
properties of that approach, the resulting robust training
is computationally very efficient. An initial evaluation of
the method indicates that it is effective at improving perfor-
mance with respect to the standard models in the absence
and presence of attacks.

1. Introduction

Recognizing inliers or outliers with respect to a probabil-
ity distribution is a task known as novelty or anomaly detec-
tion [39]. It is a fundamental problem in many applications,
and when computer vision supports agents exploring the
world “in-the-wild” it is expected that sensed data might not
belong to the distribution with respect to which models were
previously trained. Such data has to be detected as being
out of distribution and subsequent appropriate action should
be taken for its processing (e.g., open-set recognition [46]).
This novelty detection task is inherently challenging because
out of distribution data is normally not available, or even
dangerous to obtain in certain applications; thus, using fully
unsupervised approaches is often mandatory.

“Denotes equal contribution.

Among the most succesful methods for novelty detection
there are those based on deep neural networks [36,37,40].
Although very effective, neural networks are vulnerable to
even small perturbations of the input [51]. This means that
inlier or outlier samples could be easily misclassified, de-
spite a seemingly unnoticeable change, and it might even be
possible that such changes could be operated by an adver-
sarial entity, effectively instantiating an adversarial attack.
For the case of supervised learning the problem has received
considerable attention, and several approaches have been
designed to deploy different types of defenses, starting from
one of the most popular and effective, which is adversarial
training [15]. Surprisingly, very little attention has been
devoted to the development of defenses for the unsupervised
case of novelty detection.

In this work, we propose a new learning prior as a de-
fense mechanism against input data distortions or attacks that
might affect a novelty detection test. We specifically focus
on the case where the test statistic is the likelihood of the in-
put data sample, which is also a very general and principled
approach to novelty detection. We take a robust optimization
approach, where instead of optimizing a robust supervised
loss [27], we aim at learning a robust likelihood statistic.
We then integrate this principle with a recent probabilistic
novelty detection approach [4]. We show that because of
the geometric properties of that method, the implementation
of the proposed defense prior is particularly advantageous,
since the synthetic generation of outliers and inliers turns
out to be very efficient. We present an initial study of the
proposed approach, and show that the performance metrics
improve when the robust model is compared against the start-
ing model under standard benchmarks, as well as when the
benchmarks are under attacks.

2. Related Work

Novelty and anomaly detection have been studied in many
domains. The central idea is to learn a model of normality
from in distribution data in an unsupervised manner such
that during training no prior knowledge is available about
abnormal, out of distribution samples. Under this formu-



lation novelty and anomaly detection are used interchange-
ably [39,44]. Here we review several traditional and deep
learning based approaches.

Traditional Approaches. Most traditional novelty de-
tection approaches are based on either density estima-
tion [7, 12, 19] or reconstruction [2]. One-Class Support Vec-
tor Machines (OCSVM) [48] and its extension Support Vec-
tor Data Description (SVDD) [52] are unsupervised methods,
where the former learns a boundary around samples of a nor-
mal class, and the latter uses an hypersphere containing all
normal samples with a minimum radius. The performance
of these approaches is reported to degrade on complex high
dimensional datasets [10]. Other unsupervised approaches
include Robust Principal Component Analysis (RPCA) [©],
and Isolation Forest (IF) [24]. RPCA learns a linear sub-
space and it identifies the anomalies in the training data,
thereby removing them and retraining at each iteration. IF
tries to isolate anomalies from normal samples via successive
random partitions of the feature space. Compared to those
approaches, our method learns how to compute the likeli-
hood of data samples and does so by making the likelihood
training robust.

Deep Learning Approaches. Traditional approaches
have been extended with deep learning. One-class Neural
Network (OC-NN) [10] is the first approach that integrates
the OC-SVM loss in the network training. Deep SVDD [40]
instead works by jointly training a deep neural network while
optimizing a data-enclosing hypersphere in the output space.
Autoencoders have been used effectively for learning rep-
resentations of the normal distribution [42, 63]. They learn
common features in normal data and abnormal samples can-
not be reconstructed accurately because they usually contain
also other features, although it has been reported that dif-
ferent types of out of distribution samples can sometimes
be reconstructed reasonably well [54]. Some variants of
the autoencoders proposed for anomaly detection include:
denoising autoencoders [57], sparse autoencoders [28], vari-
ational autoencoders (VAEs) [5], and deep convolutional
autoencoders (DCAEs) [29,31]. We also use an autoencoder,
but the likelihood model that we build on, does not rely only
on reconstruction error, and therefore it is less affected by
the potential issues related to the reconstruction of outliers.

Other approaches combine autoencoders with Generative
Adversarial Networks GANSs [14]. AnoGAN [47] trains a
GAN to generate samples according to the normal train-
ing data. At inference time given a test sample AnoGAN
finds the latent representation that best reconstructs the sam-
ple. The anomaly score is based on the reconstruction error.
AnoGAN is effective but not computationally efficient. Effi-
cient GAN Based Anomaly Detection (EGBAD) addresses
the performance issues of AnoGAN by adopting a Bidirec-
tional GAN architecture [ 1]. In [1] they proposed to model
a latent distribution obtained from a deep autoencoder using

an auto-regressive network. [56] leverages GANs to learn
the latent distribution of normal data and uses a perceptual
loss for the detection of image abnormality. Our approach
also builds on an architecture that combines autoencoders
with GANSs under the form of adversarial autoencoders as
in Generative Probabilistic Novelty Detection (GPND) [37],
but we build on the additional geometric properties of that ar-
chitecture that were introduced in [4], and design an efficient
procedure to make the likelihood training robust.

Despite their success, GAN-based approaches for
anomaly detection suffer from several training issues such
as mode collapse [53], non-convergence and instability that
leads to oscillations during training, instead of a fixed-point
convergence [45]. On the other hand, autoencoders based
architectures are more stable and more convenient to train,
but can overfit to a pass-through identity (null) function, and
potentially reconstruct outliers when they share common
features with the normal class [13]. To prevent this, regular-
ization in the form of adding deliberate perturbation to the
input data often takes place. [43] proposed the Adversari-
ally Robust Autoencoder (ARAE), which works by forcing
perceptually similar samples to be mapped closer in their
latent representations. This is achieved by crafting adver-
sarial examples that are perceptually similar to the input,
but also have distant latent encoding from it. [3] trains the
autoencoder to directly output the desired per-pixel measure
of abnormality without first having to perform reconstruc-
tion. This is achieved by corrupting training samples with
noise and then predicting how pixels need to be shifted to
remove the noise. [18] proposed the One-Class Learned
Encoder-Decoder (OLED) an adversarial framework for nov-
elty detection in both images and videos. Rather than noise
perturbations a Mask Module based on a convolutional au-
toencoder learns to cover the most important parts of images,
and the a Reconstructor is another encoder-decoder that re-
constructs the masked images. [6] introduced Adversarially
Learned Continuous Noise (ALCN), which is an approach
to maximally globally corrupt the input prior to denoising
and verified its benefits for novelty detection.

The use of perturbed data has been studied in the area
of adversarial attacks. [27] provides evidence that deep neu-
ral networks for supervised learning can be made resistant
to adversarial attacks. They study the adversarial robust-
ness of neural networks in terms of robust optimization.
Other methods instead are based on adding priors for reg-
ularizing the supervised loss [21,62]. Related to novelty
detection, instead, [16] focusses on examining the adversar-
ial impact to deep autoencoders, and introduces a defense
strategy. Similarly, [26] introduces Principal Latent Space,
a defense strategy that is applicable to autoencoders based
novelty detection approaches, and that resembles PCA-based
denoising done in the latent space.

Our approach also leverages perturbed data, but with the



goal of learning for the first time a likelihood function that is
robust, as opposed to “robustifying” a supervised loss func-
tion, or proposing defense techniques that are transferrable.
This should make the novelty test statistic less prone to er-
rors in presence of perturbations within a certain set, but the
approach would also help address the overfitting problem of
the underlying autoencoder architecture.

3. A Prior for Robust Novelty Detection

We assume that x represents a quantity of interest, e.g.,
an image, which can be seen as a realization of a random
variable X, distributed according to px (z). Due to external
factors, we assume we have access only to a modified version
T = x + §. Here ¢ could model noise, or an alteration due
to an adversarial attack, or the sensing of unexpected or
unknown data, as it normally happens in settings in-the-wild,
when data is identified as not being in distribution (i.e., the
distribution used for training the system), but in fact, it is out
of distribution, and a subsequent appropriate action needs to
be taken. Therefore, a central question to answer is whether
or not the sample & was drawn from px. In general terms,
the problem can be approached by performing the test

_ {2 v = Inlier

px(¥) = <7y == Outlier M

where  is a suitable application dependent threshold.

Methods that perform test (1) almost interchangeably use
names like novelty [36,37], anomaly [12,34], outlier, or out
of distribution [20,49] detection, although subtle differences
are often drawn [39]. Also, in this context, px does not really
have the meaning of probability, but rather of likelihood,
which means that it depends on a particular model that was
learned from training data. Out of all the possible models,
we propose to seek for one that exhibits robustness against
a set S of predefined perturbations § € S. This means
that if = belongs to the set of inliers X, then it should be
that px (z + |z € X') > =, and if x is an outlier, then it
should be that px (z + 6|z € XC) < ~. Seeking for a robust
model would allow the novelty detector to offer improved
guarantees that it will be less affected by the attacks defined
by the set of perturbations, which could be either intentional,
or simply due to natural environmental causes.

From this discussion, we suggest that models that aim
at performing test (1) could be made robust by including in
their training a mechanism for maximizing the quantity

E|[mi X) —
[min px (z + 8|z € X) ]+

E| (z + 6|z € XC)] @)
v — maxpx(z +dlz I

where F[-] denotes expectation. The approach is based on
robust optimization, which has also inspired the recent adver-
sarial training methods for supervised learning [27]. How-
ever, rather than “robustifying” a classification loss function,

(2) tries to make the test statistic px robust. Maximizing
the first term of the robust prior (2) aims at ensuring that
the worst attacks do not turn inliers into outliers, while the
second term aims at ensuring that the worst attacks do not
turn outliers into inliers.

Note that in (2) the threshold - cancels out and it reduces
to E[minses px (z+4d|x € X)]— E[maxses px(x+d|x €
XT)). This suggests that maximizing (2) could be achieved
by turning the two terms into a single fractional term like

E[maxses px (z + 6z € X0)]
Eminges px (z + |z € X))

3)

This new fractional robust prior (3) aims for the same goals
as (2) when it is minimized, and it could be added to training
losses as a regularizer. We note that for supervised learning,
adversarial training by regularization is not new [21, 62],
but to the best of our knowledge, it is new for unsupervised
novelty or anomaly detection.

To solve the optimizations in the argument of the expecta-
tions in (2) and (3), one can take a projected gradient descent
(PGD) approach by implementing the iteration

't =Ty s(z' + aVapx (2)) 4)

where I, s is a projection operator. On the other hand, in
§5 we show that by leveraging the properties of our network
architecture it turns out that such optimizations can be solved
in closed form. To keep the paper self-contained and to
introduce notation, in §4 we summarize the novelty detection
approach that we build on top of, [4], while in §5 we describe
how we make it robust by defining the set of perturbations S
and enabling the training based on the prior (3).

4. Generative Probabilistic Novelty Detection

We summarize the formulation, properties, and training
objective function of the novelty/anomaly test initially intro-
duced in [4,37]. Specifically, we assume that training data
points D = {x1,...,xnN}, where z; € R™, are sampled,
possibly with noise &;, from the model

r; = f(z) + &

where z; is defined in a latent space €2 C R™. The mapping
f:Q — R™ defines M = f(Q), which is a parameterized
manifold of dimension n, with n < m. It is also assumed
that the Jacobi matrix of f is full rank at every point of the
manifold.

Given a new data point € R™, the novelty test to assert
whether  was sampled from model (5), is derived under a
number of assumptions. Specifically, f is imposed to be an
isometry, and in order to compute the test it is also necessary
to estimate the latent representation z of z. This is done
by first applying to Z an orthogonal projection Py, from

Z.ZI,"'7N7 (5)
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Figure 1. Autoencoder architecture. Overview of the architecture and losses of the Adversarial Autoenconder (AAE) [30] used for learning
the maps f and g. While the backbone architecture is the same as in [4], here the major addition is the use of the robust prior (23). Some
details of the architecture layers of the discriminators D, and D, are specified on the right. During training, the fake samples are generated
from an n-dimensional normal distribution N'(0, 1). =* represents a mapping of z* onto the learned manifold M, and zlis f(2).

the ambient space onto M, and then map the projection to
the representation space via f~!. This means that besides
the manifold representation f, it is also necessary to learn a
function g, defined as g(x) = f~1 o Py(x).

Mainly with the assumptions described above, given 7,
in [4,37] they compute the test statistic px in (1) as

px(Z) = pz(2)pxs (25) (6)

where pyz(z) is the probability distribution of the random
variable Z, representing the latent space, and Z+ = 7 —
f(2), represents the component of Z that is orthogonal to the
tangent space 7 of the manifold M. Such space is defined
as 7 = span(J;(Z)), with J;(Z) being the Jacobi matrix
computed at z.

The distribution p(z) is learned from training data by fit-
ting a parametric generalized Gaussian distribution. Instead,
the distribution px 1 (x1), is given by

F m—n

px(T7) =~ (_2 ,,)L,n,lpuxw(llflll) ;D
2m 2|zt

where I'(-) is the gamma function, and || - || denotes ¢5-norm.

The distribution pj x| (/|#]|) is learned by computing the
orthogonal projections of the training data, and histogram-
ming the norms between data and projectons.

4.1. Manifold Learning

A major training task is the learning of the maps f, and
g. They are modeled by an adversarial autoencoder. To

satisfy the requirements, the Jacobian Jy(z) will need to
have orthonormal columns. This means that

Jp(2) " Jp(2) =1, (8)

where [ is the identity matrix. Moreover, if f is an isometry,
then g should be such that

Jo(F()Jg(£(2) T =1, ©)
Ty(f(2)) = T5 ()T . (10)

where J,(x) denotes the Jacobi matrix of g.

To satisty (8), (9), and (10), two priors are introduced.
The first is the isometry loss £;(f), which encourages (8),
and is defined as

Li(f) =E[(IJ(2)ull = 1)7] , (11)

where « is uniformly sampled from the unit-sphere of di-
mension n — 1. The second prior is the pseudo-inverse loss
Lp(g), which encourages (9), and is defined as

Lp(g)=E[(Ju" Jy(z)] - 1)%] , (12)

where, again, v is sampled from the same unit sphere. These
priors are combined as Lrag(f,9) = L1(f) + Lp(g).

The adversarial autoencoder architecture is shown in Fig-
ure 1, which follows the design in [37]. One adversarial
component encourages the distribution on the latent space,
to be a normal distribution A/(0,1). Another adversarial



component encourages the distribution of the output of the
decoder to match the distribution of real data, i.e., the mani-
fold M. The adversarial losses are as follows

La4.(g,D-) = Ellog(D-(N(0,1)))] + Ellog(1 — D.(g(x)))] ,

13)
La, (f, Do) = Ellog(Da(x))] + Eflog(1 — Do (f(N(0,1))))] ,

(14
To minimize the reconstruction error for an inlier in-
put z it is used the cross-entropy loss L..(f,g) =
—E.[log(p(f(g(x))|z))], where L. also encourages (10).
See [17] for details, also on the implementation of the isomet-
ric priors above. We combine the losses that do not involve
discriminators in £,

La(f,9) = Lrap(f,g9) + Lee (15)

Where \; is a balancing hyperparameter. The final objective
function becomes

‘C(fv,g»DIaDZ) = ‘Cdm(fv Dm) + Cdz(gvDZ)+
AaLa(f.9)

where )\, sets the trade off between the losses with and
without discriminators, and f and g are estimated as

(16)

= i D,.D.). 1
f,4 argn]}’gng;%zﬁ(f,g, 2 D) (17

5. Robust Likelihood Model

We now describe how we make the novelty detection
method in §4 robust, based on the ideas described in §3.
First, we assume that the set of admissible perturbations is
an e-ball, which means that S = {0 : ||0]] < €}. Next, we
make the following simplifying assumptions

min px(z +0) = px(z +€ly) (18)
|\I§1\|a<x px(z+0) = px(xz —e€ly), (19)

where 1, = (x — f(2))/||l — f(2)|| is a unit norm vector.
Given the properties of the autoencoder defined by g and f,
f(2) is the orthogonal projection of z onto the manifold M,
and 1, is perpendicular to the tangent plane 7. Therefore,
(18) stems from the fact that it is reasonable to expect that
the largest drop of the likelihood px will be due to a per-
turbation that moves x away from M the furthest possible,
and this should happen along the direction orthogonal to M.
Similarly, (19) stems from the fact that we are expecting to
observe the highest increase of px when x moves the closest
towards M. See Figure 2.

We stress that (18) and (19) are possible thanks to the
properties of the autoencoder g o f. They provide a remark-
able computational saving in that the two optimizations are
solved in closed-form without requiring the use of PGD (4).

Moreover, (18) and (19) also suggest a very efficient strategy
for generating inliers and outliers data for training purposes,
as explained below, which again does not require PGD.

Since data points are modeled according to (5), then we
have that z = f(z) + v1,, where v = |£||. Therefore,
given (18), as a general recipe for generating inliers from z,
we use the following expression

fR)£w+els, (20)

where the 4 sign takes into account that inliers can be gen-
erated on both sides of the tangent plane 7. Similarly,
given (19), the general recipe for generating outliers from x
becomes

f(z)£ (v —els, (1)

where the =+ sign is introduced for the same reason as in (20).
Figure 2 illustrates the generation process.

Note, however, that (20) should be used only if f(z) £
vl, € X, which means it is an inlier. Similarly, (21) should
be used only if f(z) + v1, € XC, which means it is an
outlier. Deciding whether f(z) £+ v1, belongs to X’ or
xCis straightforward once we know the value v such that
px (f(z) £ 19l,) = . From (6) and (7), vy can be com-
puted by solving numerically the equation

—me— x|t () =7 . (22)
7 U

pz(2) 2

It follows that f(z) £ v1, € X if v < v, and that f(z) +
vl, € xCify > 1g. See Figure 2.

5.1. Robust Prior

From the previous discussion, we note that given a train-
ing dataset composed of only inliers, we can still generate
synthetic outliers according to how we choose v. In particu-
lar, we propose to randomly sample inliers by assuming that
v ~ U(]0,1p)), which means v is uniformly distributed in
the interval [0, ). Therefore, inliers come from the region
closer to M. Outliers instead, are sampled by assuming that
v ~ £(N), which means that v is exponentially distributed
with rate parameter A, and an offset vy is also added.

In essence, we propose to add to the objective func-
tion (16) the following robust prior

EwND[EVNE [pX(f(z) + (V + v — 6)1$)]]

Er(.ﬂ g) = E_rN’D[EVNL{[pX(f(Z) + (V + 6)117)”

The final procedure for the training of the robust likelihood
novelty detection (RLND) model is summarized in Algo-
rithm 1.

6. Experiments

We present the evaluation of the proposed robust like-
lihood novelty detection (RLND) method. We compare
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Figure 2. Generation of inliers and outliers. A point x is an inlier or an outlier depending on whether its distance from the manifold
M is below or above a threshold vy. The orthogonal projection of = onto M is f(z). x can be perturbed within a radius e. The strongest
perturbation for an inlier/outlier occurs in the outward/inward direction orthogonal to the tangent plane 7 .

Algorithm 1 Robust Likelihood Novelty Detection

Input: Training dataset D = {z;}¥ ;.
Parameters: Minibatch size M; radius €; rate \
Train f and g and obtain initial weights from (17)
Obtain ~ from the validation dataset

repeat

Sample a minibatch {x;; }?4: 1
forje{1,...,M} do

Compute vg ;, by solving (22)

v < draw from U([0, 19,4, ))

> Inlier generation; randomly pick + or — N
xf — flz,) £ (v + E)lxii

v 4 draw from £()\) '

> Qutlier generation; randomly pick + or — <
o
A flzi,) £ (v +vo, — 6)1%
> Use the inlier batch {,1,’5 } for the following N

Maximize L4, (14) by updating weights of D,

Minimize L4, (14) by updating weights of f

Maximize L4, (13) by updating weights of D,

> Use the inlier batch {rf } and outlier batch {15)}
for the following N

Minimize £, (15), L4, (14), and £, (23), by updating

weights of g and f.

> Note that only L. uses both inlier and outlier

batches N
until Convergence

RLND with state-of-the-art methods by using common

benchmark datasets for the unsupervised novelty detection
task, and we follow the same protocol as in [4] to maintain
consistency across all experiments. We utilize two key met-
rics: the F score and the area under the ROC (AUROC).
These metrics provide a comprehensive assessment of the
performance of our approach.

In each experiment, the datasets are partitioned into train-
ing, validation, and testing sets using a random split. Specif-
ically, we allocate 60% of the data for training, where in-
stances from each class are randomly sampled, and 20% for
validation. The remaining 20% are reserved for testing.

6.1. Datasets

We utilize three benchmark datasets commonly used for
novelty and anomaly detection, namely MNIST, Fashion-
MNIST, and Coil-100.

MNIST [22] is composed of 70,000 28 x 28 handwritten
single digits from 0 to 9.

Fashion-MNIST [59], similar to MNIST, contains 70,000
28 x 28 grayscale images of 10 fashion product categories.
Coil-100 [35] is a dataset of 7,200 color images with 100
object classes. For each of 100 objects, pictures were
taken in different poses, 5 degrees apart from one another,
resulting in 72 images for each object.

6.2. Implementation Details

We implemented Algorithm 1, where the first step trains
a GPNDI model. We refer to [4] for picking the parameters
Ar and A,. Instead, when also £, is minimized, we weight



Table 1. Fi scores on MNIST [22]. Inliers are taken to be im-
ages of one category, and outliers are randomly chosen from other
categories. All results are averages from a 5-fold cross validation.

% of outliers  D(R(X)) [41] D(X)[4]] LOF[8] DRAE[58] GPND[37] GPNDI[4] RLND (Ours)

10 0.97 0.93 0.92 0.95 0.983 0.984 0.990
20 0.92 0.90 0.83 0.91 0.971 0.976 0.986

30 0.92 0.87 0.72 0.88 0.961 0.968 0.980
40 0.91 0.84 0.65 0.82 0.950 0.960 0.977

50 0.88 0.82 0.55 0.73 0.939 0.953 0.974

Table 2. Results on Fashion-MNIST [59]. F} scores where inliers
are taken to be images of one category, and outliers are randomly
chosen from other categories.

% of outliers 10 20 30 40 50

GPND [37] 0.968 0.945 0.917 0.891 0.864
GPNDI [4] 0.974 0.953 0.930 0.904 0.873
RLND (Ours) 0.986 0.977 0970 0.961 0.954

it by a hyperparameter \,., which is set to 0.001. In all the
experiments the latent space size n, is set to 16, since it has
been reported to yield the highest F; score on the validation
sets [4,37].

The initial GPNDI model is then further trained for 30
more epochs using an NVIDIA RTX A6000 GPU and the
ADAM optimizer. For all datasets we use a batch size M =
128. Instead, to ensure optimal convergence, the learning
rates are set to 0.0002 for both MNIST and Fashion-MNIST,
while for COIL-100, the learning rate is set to 0.0003.

In Algorithm 1, we set the rate parameter A to 5.0 in all
the experiments, while the radius e varies with the dataset.
Specifically, the training € is set to € = 0.5 X vy, where v
here is intended as averaged over the inlier training sam-
ples. This choice ensures that a sample residing at the same
distance from the manifold and the decision boundary will re-
main inside the inliers set X’ even after the largest admissible
perturbation. For MNIST and Fashion-MNIST, we used ¢
values that were averaged over all choices of inlier manifolds,
and they are 2.4 and 3.0, respectively. For COIL-100, € was
determined based on the random selection of inliers. This
choice of e tailors the model to the specific inlier manifold
being learned.

6.3. Results without Attacks

MNIST dataset. For the MNIST dataset, we compose five
random balaced data splits to evaluate the performance of
our approach. We use three splits for training, reserving
one split for validation and one for testing. The value of
« that yields the highest F} score on the validation set is
then employed during the testing phase. We designate each
digit as an inlier, while the remaining digit samples are se-
lected to generate outlier percentages ranging from 10% to
50%. This allows us to assess the robustness of our approach
across different levels of novelty in the dataset. We present

1.00
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Figure 3. Results on FashionMNIST dataset.

these results in Table 1 and illustrate them graphically in Fig-
ure 4. The comparative evaluation against GPND, GPNDI
and other methods, highlights that a consistent improvement
is achieved. This suggests that the additional training based
on the robust prior (23), which is the foundation of RLND,
leads to better performance on this standard benchmark.
Fashion-MNIST dataset. We maintain consistency with
the protocol followed for the MNIST dataset when conduct-
ing experiments on Fashion-MNIST. The results of these
experiments are presented in Table 2, and visually depicted
in Figure 3. It can be seen that the robust training of RLND,
although designed for a specific class of perturbations, it can
lead to a remarkable increase in performance even when data
is not necessarily undergoing the same type of perturbations.
This result further validates the effectiveness of RLND.
Coil-100 dataset. Similar to previous datasets, we adopt a
5-fold cross-validation approach for evaluating the perfor-
mance on the Coil-100 dataset. However, in this case, we
utilize four splits for training and reserve one split for testing.
The optimal value of v is determined based on the training
set, ensuring the best possible performance during testing.
For each experiment, we randomly select 1, 4, or 7 classes
as inliers, while considering the remaining classes as out-
liers. The outliers are included at percentages of 50%, 25%,
and 15%, respectively. The results are presented in Table 3.
Our RLND approach consistently outperforms GPNDI in
all cases, further confirming its superior performance, and
the usefulness of a robust approach. Furthermore, we note
that RLND is able to match or surpass the F scores of R-
graph [01]. This is significant because R-graph is based on
a large pre-trained VGG network, whereas we are training
from scratch a very small autoencoder architecture with a
limited number of samples, which is around 70 per class.

6.4. Results with Attacks

In this experiment, our primary objective is to evaluate
the robustness of our model against e-attacks. e-attacks in-
volve perturbing the input data point = along the 1, direction
from the manifold’s projection. We conduct this test on the



Table 3. Results on Coil-100. Inliers are taken to be images of one, four, or seven randomly chosen categories, and outliers are randomly

chosen from other categories (at most one from each category).

OutRank [32,33] CoP [38] REAPER [23] OutlierPursuit [60] LRR [25]

Inliers: one category of images , Outliers: 50%

AUROC  0.836 0.843 0.900 0.908 0.847
I3 0.862 0.866 0.892 0.902 0.872

DPCP [55] (; thresholding [50] R-graph [61] GPND[37] GPNDI[4] RLND (Ours)
0.900 0.991 0.997 0.968 0.984 0.990
0.882 0.978 0.990 0.979 0.894 0.989

Inliers: four category of images , Outliers: 25%

AUROC  0.613 0.628 0.877 0.837 0.687
I3 0.491 0.500 0.703 0.686 0.541

0.859 0.992 0.996 0.945 0.960 0.980
0.684 0.941 0.970 0.960 0.953 0.970

Inliers: seven category of images , Outliers: 15%

AUROC  0.570 0.580 0.824 0.822 0.628
Fy 0.342 0.346 0.541 0.528 0.366

0.804 0.991 0.996 0.919 0.950 0.985
0.511 0.897 0.955 0.941 0.964 0.981

Table 4. Precision, Recall, I, and AUROC measures for various
e-attacks on the MNIST test set.

GPNDI RLND (Ours)
€ 0.0 0.5 1.0 2.0 3.0 ‘ 0.0 0.5 1.0 2.0 3.0
Precision 0971 0.946 0.885 0.704 0.576 | 0.971 0.954 0924 0.745 0.605
Recall 0.951 0925 0902 0.905 0.950 | 0.977 0.946 0.915 0.908 0.950
F 0961 0935 0.893 0.781 0.706 | 0.974 0.950 0919 0.806 0.726

AUROC 099 0979 0.948 0.781 0.470 ‘ 0.993 0985 0.966 0.850 0.581

Table 5. Precision, Recall, F} and AUROC measures for various
e-attacks on the Fashion-MNIST test set.

GPNDI RLND (Ours)
€ 0.0 0.5 1.0 2.0 3.0 ‘ 0.0 0.5 1.0 2.0 3.0
Precision  0.939 0.905 0.856 0.741 0.608 | 0.954 0.932 0912 0840 0.744
Recall 0931 0.931 0924 0909 0.958 | 0.956 0947 0934 0915 0917
Fy 0.937 0.921 0.886 0811 0.737 | 0.954 0939 0.922 0.881 0.814

AUROC 0979 0.921 0935 0.834 0.647 ‘ 0.987 0.980 0.968 0.923 0.836

F1 Score

— D(R(X)
T D(X)
| — LoF
—— DRAE
0604+ GPND
—— GPNDI
RLND

10 20 30 40 50
Percentage of Outliers (%)

Figure 4. Results on MNIST [22] dataset.

MNIST and Fashion-MNIST datasets. The attack on a test-
ing inlier sample z is generated by adding a perturbation
€l,. The attack on a testing outlier sample x is generated by
subtracting a perturbation €1,,.

To assess the model’s performance under attack, we mea-
sure precision, recall, F} score, and AUROC with varying
values of e. For both datasets, GPNDI and RLND were
trained as described in §6.2 and §6.3. In particular, for a
given dataset, the training e value is the same for every e-
attack. The results are reported in Table 4 and Table 5. We

note that RLND outperforms GPNDI according to all the
metrics, conditions, in both datasets, and by a significant
margin. This is a very encouraging result, which supports
the major contribution of the proposed approach. We further
note the quick and strong deterioration in performance of the
baseline approach GPNDI, as e grows, which is clearly due
to the fact that GPNDI was not robustly trained to respond to
these attacks. RLND instead, demonstrates a much smaller
rate of deterioration.

7. Conclusion

In this work we introduced a new prior for learning a
likelihood model for novelty or anomaly detection that is
robust to a predefined set of perturbations. We then inte-
grated this prior with GPNDI, an existing method for novelty
detection, which is based on computing the likelihood of
the input samples. The integration, referred to as Robust
Likelihood Novelty Detection (RLND), is computationally
efficient, and entails a training refinement of the initial model,
by optimizing an updated loss with minibatches of sampled
synthetically generated inliers and outliers. Our initial results
reveal that integrating the robust prior leads to a clear perfor-
mance improvement over the baseline method, when both are
tested on the benchmark datasets MNIST, Fashion-MNIST,
and COIL-100. This means that the prior is a beneficial
regularizer when perturbations, or attacks are not present.
Furthermore, when both the baseline model, GPNDI, and
the robust model, RLND, are subject to e-attacks, we ob-
served that the proposed method can cope with the attacks
significantly better than the baseline. While these are very
encouraging results, in future work we plan to address other
areas of investigation that we currently left out, such as test-
ing our approach against other types of adversarial attacks,
like those based on PGD.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grants No. 1920920,
2125872 and 2223793.



References

(1]

2

—

13

—

(4]

(5]

(6]

[7

—

[8

—

(9]

(10]

(11]

(12]

[13]

[14]

Davide Abati, Angelo Porrello, Simone Calderara, and Rita
Cucchiara. Latent space autoregression for novelty detection.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 481-490, 2019. 2
Hervé Abdi and Lynne J Williams. Principal component anal-
ysis. Wiley interdisciplinary reviews: computational statistics,
2(4):433-459, 2010. 2

Philip A Adey, Samet Akg¢ay, Magnus JR Bordewich, and
Toby P Breckon. Autoencoders without reconstruction for
textural anomaly detection. In 2021 International Joint Con-
ference on Neural Networks (IJCNN), pages 1-8. IEEE, 2021.
2

R. Almohsen, M. R. Keaton, D. A. Adjeroh, and G. Doretto.
Generative probabilistic novelty detection with isometric ad-
versarial autoencoders. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 2002-2012. IEEE, June 2022. 1,2, 3, 4, 6, 7,
8

Jinwon An and Sungzoon Cho. Variational autoencoder based
anomaly detection using reconstruction probability. Special
lecture on IE, 2(1):1-18, 2015. 2

Jack W Barker, Neelanjan Bhowmik, Yona Falinie A Gaus,
and Toby P Breckon. Robust semi-supervised anomaly de-
tection via adversarially learned continuous noise corruption.
In 18th International Conference on Computer Vision Theory
and Applications, 2023. 2

Arslan Basharat, Alexei Gritai, and Mubarak Shah. Learning
object motion patterns for anomaly detection and improved
object detection. In 2008 IEEE conference on computer vision
and pattern recognition, pages 1-8. IEEE, 2008. 2

Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and
Jorg Sander. Lof: identifying density-based local outliers. In
ACM sigmod record, volume 29, pages 93—-104. ACM, 2000.
7

Emmanuel J Candes, Xiaodong Li, Yi Ma, and John Wright.
Robust principal component analysis? Journal of the ACM
(JACM), 58(3):1-37,2011. 2

Raghavendra Chalapathy, Aditya Krishna Menon, and Sanjay
Chawla. Anomaly detection using one-class neural networks.
arXiv preprint arXiv:1802.06360, 2018. 2

Jeft Donahue, Philipp Krihenbiihl, and Trevor Darrell. Ad-
versarial feature learning. arXiv preprint arXiv:1605.09782,
2016. 2

Eleazar Eskin. Anomaly detection over noisy data using
learned probability distributions. In In Proceedings of the In-
ternational Conference on Machine Learning. Citeseer, 2000.
2,3

Dong Gong, Linggiao Liu, Vuong Le, Budhaditya Saha,
Moussa Reda Mansour, Svetha Venkatesh, and Anton van den
Hengel. Memorizing normality to detect anomaly: Memory-
augmented deep autoencoder for unsupervised anomaly de-
tection. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 1705-1714, 2019. 2

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

[24]

(25]

[26]

[27]

(28]

(29]

(30]

(31]

Yoshua Bengio. Generative adversarial networks. Communi-
cations of the ACM, 63(11):139-144, 2020. 2

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples, 2015. 1
Adam Goodge, Bryan Hooi, See Kiong Ng, and Wee Siong
Ng. Robustness of autoencoders for anomaly detection under
adversarial impact. In Proceedings of the Twenty-Ninth Inter-
national Conference on International Joint Conferences on
Artificial Intelligence, pages 1244-1250, 2021. 2

Amos Gropp, Matan Atzmon, and Yaron Lipman. Isometric
autoencoders. arXiv preprint arXiv:2006.09289, 2020. 5
John Taylor Jewell, Vahid Reza Khazaie, and Yalda Mohsen-
zadeh. One-class learned encoder-decoder network with ad-
versarial context masking for novelty detection. In Proceed-
ings of the IEEE/CVF winter conference on applications of
computer vision, pages 3591-3601, 2022. 2

JooSeuk Kim and Clayton D Scott. Robust kernel den-
sity estimation. Journal of Machine Learning Research,
13(Sep):2529-2565, 2012. 2

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wil-
son. Why normalizing flows fail to detect out-of-distribution
data. June 2020. 3

Alexey Kurakin, Ian J. Goodfellow, and Samy Bengio. Adver-
sarial machine learning at scale. In International Conference
on Learning Representations, 2017. 2,3

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998. 6, 7, 8

Gilad Lerman, Michael B McCoy, Joel A Tropp, and Teng
Zhang. Robust computation of linear models by convex relax-
ation. Foundations of Computational Mathematics, 15(2):363—
410, 2015. 8

Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation
forest. In 2008 eighth ieee international conference on data
mining, pages 413-422. IEEE, 2008. 2

Guangcan Liu, Zhouchen Lin, and Yong Yu. Robust subspace
segmentation by low-rank representation. In Proceedings
of the 27th international conference on machine learning
(ICML-10), pages 663-670, 2010. 8

Shao-Yuan Lo, Poojan Oza, and Vishal M Patel. Adversarially
robust One-Class novelty detection. IEEE Trans. Pattern Anal.
Mach. Intell., 45(4):4167-4179, Apr. 2023. 2

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learn-
ing models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083,2017. 1,2, 3

Alireza Makhzani and Brendan Frey. K-sparse autoencoders.
arXiv preprint arXiv:1312.5663,2013. 2

Alireza Makhzani and Brendan J Frey. Winner-take-all au-
toencoders. Advances in neural information processing sys-
tems, 28, 2015. 2

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian
Goodfellow, and Brendan Frey. Adversarial autoencoders.
arXiv preprint arXiv:1511.05644, 2015. 4

Jonathan Masci, Ueli Meier, Dan Ciresan, and Jiirgen Schmid-
huber. Stacked convolutional auto-encoders for hierarchical
feature extraction. In Artificial Neural Networks and Machine
Learning—ICANN 2011: 21st International Conference on



(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

Artificial Neural Networks, Espoo, Finland, June 14-17, 2011,
Proceedings, Part I 21, pages 52-59. Springer, 2011. 2
HDK Moonesignhe and Pang-Ning Tan. Outlier detection us-
ing random walks. In Tools with Artificial Intelligence, 2006.
ICTAI’06. 18th IEEE International Conference on, pages
532-539. IEEE, 2006. 8

HDK Moonesinghe and Pang-Ning Tan. Outrank: a graph-
based outlier detection framework using random walk. Infer-
national Journal on Artificial Intelligence Tools, 17(01):19—
36, 2008. 8

Benjamin Nachman and David Shih. Anomaly detection with
density estimation. Phys. Rev. D, 101(7):075042, Apr. 2020.
3

Sameer A Nene, Shree K Nayar, Hiroshi Murase, et al.
Columbia object image library (coil-20). 1996. 6
Pramuditha Perera, Ramesh Nallapati, and Bing Xiang. Oc-
gan: One-class novelty detection using gans with constrained
latent representations. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR),
June 2019. 1, 3

Stanislav Pidhorskyi, Ranya Almohsen, and Gianfranco
Doretto. Generative probabilistic novelty detection with ad-
versarial autoencoders. Advances in neural information pro-
cessing systems, 31,2018. 1,2,3,4,7,8

Mostafa Rahmani and George K Atia. Coherence pursuit:
Fast, simple, and robust principal component analysis. /EEE
Transactions on Signal Processing, 65(23):6260-6275, 2016.
8

Lukas Ruff, Jacob R Kauffmann, Robert A Vander-
meulen, Grégoire Montavon, Wojciech Samek, Marius Kloft,
Thomas G Dietterich, and Klaus-Robert Miiller. A unifying
review of deep and shallow anomaly detection. Proceedings
of the IEEE, 109(5):756-795, 2021. 1,2, 3

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas
Deecke, Shoaib Ahmed Siddiqui, Alexander Binder, Em-
manuel Miiller, and Marius Kloft. Deep one-class classifica-
tion. In International conference on machine learning, pages
4393-4402. PMLR, 2018. 1,2

Mohammad Sabokrou, Mohammad Khalooei, Mahmood
Fathy, and Ehsan Adeli. Adversarially learned one-class
classifier for novelty detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3379-3388, 2018. 7

Mayu Sakurada and Takehisa Yairi. Anomaly detection using
autoencoders with nonlinear dimensionality reduction. In
Proceedings of the MLSDA 2014 2nd Workshop on Machine
Learning for Sensory Data Analysis, page 4. ACM, 2014. 2
Mohammadreza Salehi, Atrin Arya, Barbod Pajoum, Moham-
mad Otoofi, Amirreza Shaeiri, Mohammad Hossein Rohban,
and Hamid R Rabiee. Arae: Adversarially robust training of
autoencoders improves novelty detection. Neural Networks,
144:726-736, 2021. 2

Mohammadreza Salehi, Hossein Mirzaei, Dan Hendrycks,
Yixuan Li, Mohammad Hossein Rohban, and Mohammad
Sabokrou. A unified survey on anomaly, novelty, open-set,
and out-of-distribution detection: Solutions and future chal-
lenges. arXiv preprint arXiv:2110.14051,2021. 2

[45]

[40]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

(54]

(55]

[56]

(571

(58]

Divya Saxena and Jiannong Cao. Generative adversarial
networks (gans) challenges, solutions, and future directions.
ACM Computing Surveys (CSUR), 54(3):1-42, 2021. 2
Walter J. Scheirer, Anderson Rocha, Archana Sapkota, and
Terrance E. Boult. Towards open set recognition. [/EEE
Transactions on Pattern Analysis and Machine Intelligence
(T-PAMI), 35, July 2013. 1

Thomas Schlegl, Philipp Seebock, Sebastian M Waldstein,
Ursula Schmidt-Erfurth, and Georg Langs. Unsupervised
anomaly detection with generative adversarial networks to
guide marker discovery. In Information Processing in Medical
Imaging: 25th International Conference, IPMI 2017, Boone,
NC, USA, June 25-30, 2017, Proceedings, pages 146—157.
Springer, 2017. 2

Bernhard Scholkopf, Robert C Williamson, Alex Smola, John
Shawe-Taylor, and John Platt. Support vector method for
novelty detection. Advances in neural information processing
systems, 12, 1999. 2

Joan Serra, David Alvarez, Viceng Gémez, Olga Slizovskaia,
José F Nuiiez, and Jordi Luque. Input complexity and out-of-
distribution detection with likelihood-based generative mod-
els. In International Conference on Learning Representations,
Feb. 2022. 3

Mahdi Soltanolkotabi, Emmanuel J Candes, et al. A geomet-
ric analysis of subspace clustering with outliers. The Annals
of Statistics, 40(4):2195-2238, 2012. 8

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks, 2014. 1

David MJ Tax and Robert PW Duin. Support vector data
description. Machine learning, 54:45-66, 2004. 2

Hoang Thanh-Tung and Truyen Tran. Catastrophic forgetting
and mode collapse in gans. In 2020 international joint con-
ference on neural networks (ijcnn), pages 1-10. IEEE, 2020.
2

Alexander Tong, Guy Wolf, and Smita Krishnaswamyt. Fix-
ing bias in reconstruction-based anomaly detection with lips-
chitz discriminators. In 2020 IEEE 30th International Work-
shop on Machine Learning for Signal Processing (MLSP),
pages 1-6. IEEE, 2020. 2

Manolis C Tsakiris and René Vidal. Dual principal component
pursuit. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pages 10-18, 2015. 8

Nina Tuluptceva, Bart Bakker, Irina Fedulova, and Anton
Konushin. Perceptual image anomaly detection. In Pattern
Recognition: 5th Asian Conference, ACPR 2019, Auckland,
New Zealand, November 2629, 2019, Revised Selected Pa-
pers, Part I, pages 164—178. Springer, 2020. 2

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th
international conference on Machine learning, pages 1096—
1103, 2008. 2

Yan Xia, Xudong Cao, Fang Wen, Gang Hua, and Jian Sun.
Learning discriminative reconstructions for unsupervised out-
lier removal. In Proceedings of the IEEE International Con-
ference on Computer Vision, pages 1511-1519, 2015. 7



[59]

[60]

[61]

[62]

[63]

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:
a novel image dataset for benchmarking machine learning
algorithms. arXiv preprint arXiv:1708.07747,2017. 6,7
Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Ro-
bust pca via outlier pursuit. In Advances in Neural Informa-
tion Processing Systems, pages 2496-2504, 2010. 8

Chong You, Daniel P Robinson, and René Vidal. Provable
self-representation based outlier detection in a union of sub-
spaces. arXiv preprint arXiv:1704.03925, 2017. 7, 8
Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Lau-
rent El Ghaoui, and Michael Jordan. Theoretically principled
trade-off between robustness and accuracy. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
pages 7472-7482. PMLR, 2019. 2, 3

Chong Zhou and Randy C Paffenroth. Anomaly detection
with robust deep autoencoders. In Proceedings of the 23rd
ACM SIGKDD international conference on knowledge dis-
covery and data mining, pages 665-674, 2017. 2



	. Introduction
	. Related Work
	. A Prior for Robust Novelty Detection
	. Generative Probabilistic Novelty Detection
	. Manifold Learning

	. Robust Likelihood Model
	. Robust Prior

	. Experiments
	. Datasets
	. Implementation Details
	. Results without Attacks
	. Results with Attacks

	. Conclusion

